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ﬂ;ﬂ; A practical technique is presented for determining the

ﬂgi probability density function and cumulative distribution function of
e

products, quotients, and powers of dependent random variables with

::} bivariate H-function distributions. The bivariate H-function is the
H}- most general function of two variables, encompassing as special cases
»C

:;. most of the other special functions of mathematics and many of the
:{:i classical bivariate distributions. The unique properties of the

“%:: bivariate H-function make it a powerful tool in the analysis of

e

i;U products, quotients, and powers of dependent random variab]es.<f’,.,un -
qi;f This dissertation first provides background material, including
LN

:f: history, on the algebra of random variables, definitions and

;;: properties of double integral transforms, and theorems on

f%f transformations of random variables. The history of bivariate.
‘Snj H-functions along with two new definitions, associated properties, and
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density function of products, quotients, and powers of dependent
random variables are given. Included in this work are bivariate
transformation theorems for products and ratios of pairwise
independent variables from two or more bivariate distributions.

The definition, special cases, and transformation theorems for
the bivariate H-function distribution are presented. These theorems
show that the probability density function of products, quotients, and
powers of dependent H-function variates is an H-function distribution
of one variable. Transformation theorems for products and ratios of
pairwise independent H-function variates from two or more bivariate
H-function distributions are also given. Such combinations of
pairwise independent variables result in bivariate distributions which
are also bivariate H-functions. Formulas for finding the ordered
moments of the bivariate H-function distribution are derived. The
cumulative distribution function of a bivariate H-function
distribution is shown to be another bivariate H-function. The

cumulative distribution function is then used to derive a formula for

finding the constant of a bivariate H-function distribution.
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the analytic form of the bivariate H-function is analyzed by

performing the double contour integral iteratively. 1In this fashion

inversion is accomplished by summing the residues iteratively in each
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probability density function and cumulative distribution function of
products, quotients, and powers of dependent random variables with
bivariate H-function distributions. The bivariate H-function is the
most general function of two variables, encompassing as special cases
most of the other special functions of mathematics and many of the
classical bivariate distributions. The unique properties of the
bivariate H-function make it a powerful tool in the analysis of
products, quotients, and powers of dependent random variables.

This dissertation first provides background material,
including history, on the algebra of random variables, definitions and
properties of double integral transforms, and theorems on
transformations of random variables. The history of bivariate
H-functions along with two new definitions, associated properties, and
special cases of the bivariate H-functions are given. Theorems

expanding the use of double Mellin transforms to find the probability
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density function of products, quotients, and powers of dependent

random variables are given. Included in this work are bivariate
transformation theorems for products and ratios of pairwise
independent variables from two or more bivariate distributions.

The definition, special cases, and transformation theorems for
the bivariate H-function distribution are presented. These theorems
show that the probability density function of products, quotients, and
powers of dependent H-function variates is an H-function distribution
of one variable. Transformation theorems for products and ratios of
pairwise independent H-function variates from two or more bivariate
H-function distributions are also given. Such combinations of
pairwise independent variables result in bivariate distributions which
are also bivariate H-functions. Formulas for finding the ordered
moments of the bivariate H-function distribution are derived. The
cumulative distribution function of a bivariate H-function
distribution is shown to be another bivariate H-function. The
cumulative distribution function is then used to derive a formula for
finding the constant of a bivariate H-function distribution.

Utilizing theorems from complex analysis of higher dimensions,
the analytic form of the bivariate H-function is analyzed by
performing the double contour integral iteratively. In this fashion
inversion is accomplished by summing the residues iteratively in each

of the complex s planes.
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CHAPTER 1

Introduction and Review

1.1 Purpose and Scope

Suppose one wishes to determine the exact probability density
function of the product of two random variables, X and Y, with known
probability density functions, fx(x) and fy(y), such that fy(x) =0
for x < 0 and fy(y) = 0 for y < 0. 1If X and Y are independent, the
desired answer is the inverse Mellin transform of the product of the
Mellin transforms of fx(x) and fy(y). This process is well
established and has been used extensively in the algebra of
independent variables.

Now, suppose that X and Y are not independent. If the
bivariate probability density function fX,Y(x’Y) is known, an answer
still may be obtained by the use of double Mellin transform
techniques. To date, very little work has been done in this area due
to the difficulties of performing the double transform operations.

Suppose, however, that one has a general function of two
variables which has as special cases all of the bivariate probability
density functions in some group of interest. If a solution exists for
the general function of two variables by application of the double
transform techniques, then the resulting solution covers all those
problems involving the special cases. This is the motivation for
using a general function of two variables.

Suppose further, that the application of the double transform
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}E techniques to the general function of two variables has as its
"
::: solution a general function of one variable which has as special cases
all the univariate probability density functions of some interest
:; group; specifically, the H-function of one variable. If this
N
.

supposition is true, then one has a powerful technique for finding

oy 3,4y
T )

exact distributions of products and quotients of dependent random

O Ll
Sy

variables, and a means of combining these distributions with other

EF independent univariate distributiouns.

!; The primary purpose of this dissertation is to develop a

ﬁj general technique, presented in Chapter 5, for determining the

é§ probability density function and the cumulative density function of

{ “ the random variable

,J z = xPYd

35 where X and Y are dependent random variables with joint probability

\}. density function which may be expressed as a bivariate H-function and

ﬂi? p and q are rational counstants. The general function of two variables

E; known as the bivariate H-function is chosen for several reasons.

;: First, the bivariate H-function is the most general of the special

::E functions of two variables and includes nearly every named function as

A

::§ a special case. Second, much like the bivariate normal arises as a

"

‘;“ natural extension to the univariate normal, it would seem that the

- bivariate H-function distribution should be a natural extension to the
univariate H-function distribution. This is indeed the case. Chapter

s 4 shows that many of the properties that hold for univariate
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H-function distributions hold also for the bivariate H-function

distribution. The bivariate H-function distribution has the
additional feature that the products, quotients and rational powers of
dependent H-function variates are reduced to univariate H-function
variates.

In developing the theory above, a second purpose evolved as a
natural extension to the primary purpose above. A technique is
presented in Chapter 5 for determining the bivariate probability

density function for the random variables

np n q
zZ= 4 X L wa Y, 1
i=1 i=1

where each pair, (Xi’Yi)’ are dependent variates with a given
bivariate density function which is expressible as a bivariate
H-function and Xi, Xj i#j and Yi’ Yj i#j are independent. Exponents
Py and q are rational constants. It is shown in Chapter 5 that such
combinations of pairwise independent variates result in the dependent
variates Z and W which have a bivariate density function which is also
expressible as a bivariate H-function distribution.

In the course of developing the above general technique, some
secondary purposes became evident. One is the attempt, in Chapter 3,
to relate bivariate H-functions to known special functions and to
other simpler H-functions. The general form for the bivariate

H-function is a double contour integral containing products and

. -
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}}5 quotients of gamma functions and is not readily identified by this
~ A
zéz form. The properties and identities given in Chapter 3 prove useful
in evaluating H-functions in later Chapters.
% \'I
N
"j In his dissertation, Cook (5) gives a convergence proof for
g} -
EE. the univariate H-function distribution and a readily applied technique
Wy
{ for inverting the H-function using residue theory. Chapter 6
':;: demonstrates the applicability of using residue theory in the
fﬁ? bivariate case and several examples are given. While the techniques
!ti given are generally applicable, a bivariate proof similar to that
:ji; given by Cook would still be required to develop practical guidelines
1.\-
;n: for when left half plane residues versus right half plane residues
S
( ] should be summed in each contour integral to evaluate a given
,j:j bivariate H-function.
:53 To study and develop the power of the bivariate H-function
j' distribution, three new bivariate exponential distributions are
;gﬁ developed in Appendix C. These distributions are shown to be special
g
L
.::’ cases of the bivariate H-function distribution in Chapter 4. These
.r‘ distributions indicate the versatility of the bivariate H-funmction
:iﬁ distribution in the contours the bivariate H-function can undertake as
e
i\: given in Appendix D.
N
if‘ Some important limitatioans to the scope of this dissertation
:}: must be stated. For instance, techniques are presented for
QU
:&: determining products, quotients and rational powers of dependent
Ll
o
::7 H-function variates. The study of sums and differences of independent
‘; B
"‘ S
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H-function variates has been established through the work of Carter
(3,4), Eldred (7), and Cook (5). The extension to dependent
H-function variates for sums and differences is not immediately
accomplished. To do so, one must first extend Prasad's theorems (57)
for obtaining the Mellin transform from its Laplace transform and
conversely to the bivariate case. Then, one must be able to obtain
the Laplace transform of the bivariate H-function. Some work in this
area has already been accomplished by Goyal (69). Finally, one must
determine if a general technique for using double Laplace transforms
exists for solving for the density function of a random variable which
is the sum of two dependent random variables. While it would seem
natural that such a theory similar to that developed for products and
quotients of dependent random variables using double Mellin transforms
exists, the development of such a theory would present a formidable
task.

The bivariate H-function is not defined for a zero or negative
real value of its arguments. Therefore, only probability density
functions that are defined to be zero for nonpositive arguments are
treated. Techniques for finding probability demsity functions defined
non-zero for both positive and negative arguments are handled by
dividing such functions into four components, one for each quadrant.
Such techniques are presented by Fox (10) and Subrahamian (19). These
techniques result as an extension to work done by Epstein (9) and

Springer and Thompson (18) for independent variables.
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The algebra of random variables is a vast field of study and
the study of the algebra of dependent random variables is still in a
relative state of infancy. Combining the advantages of a general
function and of certain properties of the bivariate H-function and its
subsequent reduction to a univariate H-function for products and

quotients of dependent H-function variates is, hopefully, a meaningful

contribution to this field of study.
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1.2 Literature Survey

Since the 1920's, considerable attention has been given to the
‘ derivation of probability distributions that are the result of some

algebraic combination of random variables with known probability

- distributions. Early authors, including Aroian (24), Craig (26), and
(f Craig (27,28,29) have presented detailed discussions on sums,

t products, and quotients of independent random variables. The use of
S Fourier and Laplace transforms extended the earlier work dealing with
: sums and differences of random variables. Springer provides an

.; excellent discussion and bibliography on this subject in his book

\ (17).

Fb The problem of treating products and quotients of random
l: variables, however, was limited to a few special cases. The first

g practical approach for dealing with products and quotients of

j independent variables was presented by Epstein in 1948 (9). Epstein
N used the Mellin integral transform to derive the probability density
‘S functions of the Student t and Fisher F statistics and of the product
ﬁ of two standardized normal variates. His work was limited to two

: random variables. In 1966, Springer and Thompson (18) extended the

N

work of Epstein to n random variables.

The most significant advances in the algebra of random
variables came in 1972 when Carter (3,4) tied together the physical
science work on H-functions and the probability work on Mellin

integral transforms into a powerful general theory. He introduced a
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new probability distribution, the H-function distribution, which

includes as special cases, ten of the well known classical
distributions - gamma, exponential, chi-square, Weibull, Rayleigh,
Maxwell, half-normal, beta, half-Cauchy, and general hypergeometric.
Carter also proved that products, quotients, and rational powers of
independent H-function variates are also H-functions.

In 1979, Eldred (7) extended the work of Carter by developing
a computer program to calculate the probability density function of
combinations of products, quotients, and powers of H-function
variates. He also derived the H-functional form for the half-Student
and ¥ distributions.

Cook (5,6) carried this work even further to provide a simpler
method for calculating the H-function resulting from some combination
of H-function variates. He also developed a new computer program
which could handle sums as well as products, quotients, and powers of
H-function variates.

Most of the current work on transform and H-function theory
for the algebra of independent random variables is given in books by
Springer (17), Mathai and Saxena (14), and Giffin (98) and in papers
by Eldred (7) and Cook (5,6).

Today, the H~function techniques are powerful enough to handle
most algebraic combinations of independent random variables. However,
the algebra of dependent random variables has received little

attention. Much of this has been due to the inability to separate
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. random variables residing in a multivariate density function due to :
N -
‘ﬁ the dependency structure of the density function. Indeed, simply f
~ ’
{‘ defining a bivariate density function for two dependent random :
'
& variables with known marginal density functions has been a major o
{: obstacle. Except for the bivariate normal, no unique bivariate N

density function can be derived for two random variables with a given
- covariance matrix and marginal density functionms.

In the 1920's, other bivariate distributions were constructed N

which had as marginal distributions corresponding well known

- - g " N A
RIAPLILALAL P P

univariate distributions which included - bivariate Students t,

RNt d

bivariate beta, and Rhodes distributions. Little more was g

accomplished until the development of a bivariate gamma distribution

Lt
-

in 1941.

In 1960, Gumbel (37) studied a bivariate distribution which

A “-

has exponential margins, but no meaningful derivation for the .

distribution is known. Marshall and Olkin (48,49) introduced a

(‘ '
< bivariate distribution with exponential marginals by studying a R
G "4
L two-component system which fails to function after a shock to ome or K-
q )
[~. both components. Further, by making a simple variable transformation,
+ 4 .
. they were able to express a meaningful bivariate Weibull distribution. v
-. . g
A In a recent book, Mardia (47) provides an excellent summary -
-4
X and bibliography of most of the well known bivariate distributions {
- derived up through 1970. Ord (55) provides a similar summary on i
[~ families of frequency distributions which include certain classes of .
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bivariate distributions. A summary of the more classical bivariate
distributions given by these two authors is given in Appendix A. More
recent contributions include a derivation of a compound gamma
bivariate by Hutchinson (42) in 1981 and a new class of bivariate
logistic distributions by Ali and Mikhail (21) in 1978. Also, current
interests have extended certain known bivariate distributions into the
complex space. Recent articles include those by Brock and Krutchoff
(25), Giri (36), and Saxena (58).

With the exception of the bivariate normal distribution, most
of the work in multivariate analysis has been in the area of
characterizing a given bivariate distribution either through a
thorough study of its marginal and conditional probability
distributions, or through a study of its characteristic function.

Such analysis is reproduced in books by Springer (17), Anderson (23),
Feller (34,35), Mood and Graybill (52), and Parzen (56). In addition,
recent articles on the subject include those of Lukacs and Beer (46)
and Abrahams and Thomas (20).

Work on the actual distribution of algebraic combinations of
dependent random variables has been mostly limited to the bivariate
normal distribution. In his book, Springer (17) defines the bivariate
normal distribution as well as an established methodology for deriving
the sums of bivariate normal variates using double Fourier integral
transform techniques. The distribution of the product of two

dependent normal variates was studied by Aroian (24) in 1947, and the
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distribution of the quotient of two dependent normal variates by Craig
(27) in 1942. Nicholson (54) used a geometrical approach to study the
ratio between two dependent variables, but was able to apply his
results only to the bivariate normal.

Along with new interests in studying and developing new and
meaningful bivariate distributions came revived interests in studying
products, quotients, and sums of the dependent variates of these
distributions. Current research is very specific in nature in that
techniques used for one bivariate functional do not apply to another
bivariate functional. 1Indeed, the techniques for products or
quotients may not even be the same for a given bivariate density.
Current research in this area include Abrahams and Thomas (20), Alsina
and Bonet (22), Gupta (38), Lee, Holland, and Flueck (45), Mathai
(50), Tan (60), and Wallgren (61). From these studies it becomes
clear that a more general theory that is applicable to a wide variety
of cases is a much needed tool for the multivariate analyst.

In 1944, Reed (16) defined the double Mellin integral
transform and its inversion integral with associated theorems for
each. He also presented a theorem for deriving the double Mellin
transform of the product of two bivariate functionals. As an example
of his theorems, Reed derived the double Mellin transform identities

J{? for Appell's hypergeometric functions of two variables.
,or
: : Fox (10) provided the first practical method of handling
‘ .
o»,
E;: products of bivariate density variates by extending the results
e
. : \.:
~
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derived by Reed (16) to cases of statistical distributions. He also

included some work on quotients of bivariate density variates as well
as a detailed discussion on how to handle functionals that resided in
other than the first quadrant. Fox's work however, was limited to
finding a bivariate density function that resulted from products or
quotients of variates of two bivariate density functions.

Subrahamian (19) was the first to provide significant insight
as to deriving a univariate density function which resulted from a
product or quotient of two dependent variables which share a single
bivariate distribution. He used the results of Fox (10) and combined
them with earlier results on independent variates by Epstein (9) and
Springer and Thompson (18). Subrahamian applied his conclusions to
the bivariate normal distribution and derived by this alternative
method the same results previously presented by Aroian (24) and Craig
(27,28).

As a result of the labors of the authors listed above, today's
statisticians have a set of powerful tools in transform theory for
handling certain algebraic combinations of independent and dependent
variables. However, it would seem a natural and powerful extension to
this theory if one could apply certain results of Carter's H-function
analysis to bivariate distributions as well. A brief review of work
on H-functions of two variables follows.

In the early 1970's, Verma (86,87), Mittal and Gupta (75), and

Goyal (69) extended the H-function defined by Fox to a generalized
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H-function of two variables. In their book, Mathai and Saxena (1l4)

reproduce a formal definition of the H-function of two variables as
well as some important properties and identities for the H-function of
two variables. They point out the importance of this function arises
from the fact that it contains as special cases H-functions of one
variable, G-function of two variables, Whittaker functions of two
variables, and Appell's functions of two variables.

The majority of H-function work has been highly theoretical
and generally restricted to a few special cases. Most of the articles
on the subject are by authors from India and are published in foreign
or little known journals, and are not easily accessible to the U.S.
researcher. Almost no applications are given in the literature and
the few given are for physics and engineering. Due to the notation
and the curse of dimensionality, this problem is particularly true for
the H-function of two variables. Thus far, the limited work done on
bivariate H-functions has been in the area of extension of work from
G-functions to H-functions, Argarwal and Singhal (62), and on
identifying special cases of the bivariate H-function, Anandani (64).
Most of the significant work done on the bivariate H-function lies in
the area of solving differential or integral equations. Solutions of
dual integral equations by the use of H-functions can be seen in the
works of Pathak and Prasad (78) and Saxena (82,83). In 1972, Mittal
and Gupta (75) used a generalized function of two variables to solve

certain classes of integral equations.
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; Along with a more general and subsequently more useful

N

"': definition of the bivariate H-function, Goyal (69) provides some

- insights on the applicability of taking the Laplace transform of the
::.-f - bivariate H-function. Other work in this area includes Prasad and

Maurya (79) and DeAnguio and Kalla (66).
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jf% 1.3 Bivariate Probability Theory

1.3.1 Definitions:

(;) (35:66-74;56:354-365;52:82-98,198-215;23:60-66343:4-12)
SN
f{:- Let X and Y be jointly distributed random variables having the
e bivariate density function denoted by fx Y(x,y) and the bivariate
o ’
‘" j cumulative distribution function by Fy y(x,y). Then
b
v
.
o FX’Y(x,y) =P(X<x, Y<Yy) (1.1)
o
!-‘;
:#%- If we are interested only in the cumulative distribution of X,
ARY
:::- then it is apparent from (l1.1) that
N
PR < %) = By y(x,) (1.2)
i
e Therefore, Fx(x) = Fy y(x,=) defines the cumulative
D ,
'3" distribution function for X and its associated density function is
\:: given by
o
3 Eg(x) = J £y y(x,y)dy (1.3)
."b‘ -
R
ﬂ\d Similarly, the density function for y is given by
o
‘-
! ) -
e Ey(y) =/ Ey y(x,y)dx (1.4)
~.$\ -
My
~od
"
N

The density functions fx(x) and fY(y) are known as the marginal
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o density functions for the joint density fuaction fx Y(x.y)-
. ’

The expectation Wy and variance oxz of x, if they exist, are

given by
- o™
My = E(x) = {- {, xfy y(x,y)dxdy (1.5)
and
2 =T 2
O =Var(x) =/ [ (x-u)) Ex,y(x,y)dxdy (1.6)
-0 =

Similar identities are given for the expectation Wy and

variance cyz of Y.

The expectation ”xy’ or first product moment of X and Y, is

given by

= E(xy) =) [ xyfx’Y(x,y)dxdy (1.7)

—-0D =D

Mgy

,‘
R

Equations (1.5) and (1.6) can be written in a more general

o
ALA

form for higher ordered moments of fx,Y(x’Y)' Let %31,n2 be the nl,n2

A @

LA ATRERER

ordered moment for fx Y(x,y), then a 2 is given by

nl,n

e
]

’
’

- nl_n2
°n1,n2 E(x7y™)

I'l'
Nu N

AY X

=[f [ x"lynzfx’y(x,Y)dxdy (1.8)
- -0

. 'l_:v_:' :l"ﬁ

Then, &y, = uxs p,1 = Mys aRd &)y = by

LR LY A SR G A R R U N R P S NV NEIL S N IR SR N S e I S YR Y A TR I NI N e e A e N e Vet T
15 A S R I N RNV Ay oy I AT M A A R A0 Iy e 6 AN, UG B v 8, L 0, W N VAN O A N RN A



TV AR T T W W LA and sk Sdl dodk Son s YT cw ey - -
SOOI AN B B S A e A A A A S A At S A A M O S A AR A A S SAARA WA A A AN AR SR A S A AN

A
y’ ‘l‘ ,

4%

>
4 '

D00

ok
s

-
.

P
4
P LD

17

&

LS
2SS ",l

‘.

Similarly, the central moments, unl,nZ’ for fX’Y(x,y) are

e _ate IEe b 4
Ao
[y

given by

X

]
L
o

“al,n2 = Ellx - E(x) 1™ 1y - E(» 172 (1.9)

E R
s ."‘." n.' l"/" .

.

2 2
Then, u2,0 =0, u0,2 =0 and ”1,1 is referred to as the

covariance of X and Y.

-~

>3]

Specifically rewritten, the covariance cov(x,y) for X and Y is

N gy
P

3

given by |

2 @

h)
S

cov(x,y) =/ [ (x-ux)(y-uy)fx.y(x.y)dxdy

-D -

A, Y
’ ‘.'.,'-. "l”.ll

P~

= xyfx’Y(x,y)dxdy - Hghy (1.10)

I 7

LY

PR s

The covariance of X and Y is a measure of the dependency

RN

« R0

between the two random variables X and Y. The dependency structure of

LhL
SRt
Py

Taad
LA AS
v

X and Y may also be characterized by the correlation coefficient,

p(x,y), and is given by

L,
%

'®

vy
s %s e ‘oI

p(x,y) = cov(x,y)/o0, (1.11)

"'-.'..'-" (AL
r{ o,
LN

If X and Y are independent, then p(x,y) = 0. However, it is

A

X

L4 NS

not necessarily true that if p(x,y) = O, then X and Y are independent.
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1.3.2 Properties of Moments: (56:354-365)

Let g(x,y) be a function of X and Y where X and Y are jointly
continuous with a joint density function fx Y(x,y). The expected
value of a function of two real variables, E[g(x,y)], is defined as

Elg(x,y)] =/ [ g(x,¥)fy y(x,y)dxdy (1.12)

From this definition, the following linearity property for

expectations of jointly distributed random variables is derived.

Theorem 1.1: 1If X and Y are real random variables which are jointly

distributed by fx Y(x,y), and 1f X and Y have finite expectations E(x)
?

and E(y), then the sum X+Y has a finite expectation given as
E(x + y) = E(x) + E(y) (1.13)

A similar relation may be found for finding the variance of

two jointly distributed random variables.

Theorem 1.2: 1If X and Y are real random variables which are jointly

distributed by fx Y(x,y), and if X and Y have finite variances Var(x)
»
and Var(y) and a finite covariance Cov(x,y), then the sum X+Y has a

finite variance given as
Var(x+y) = Var(x) + Var(y) + 2Cov(x,y) (1.14)

1.3.3 Moment Generating Functions: (56:354-365;52:200-204)

The joint moment-~generating function for a probability density

function of two variables fx y(x,y) is given by
’
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- [ o tlx + tzy
FX,Y(tl’tZ) =[ | e fx’Y(x,y)dxdy (1.15)

-l -0
where t, and ty are two real numbers for which the double integral
exists.
If the integral exists, then the following moments may be

found:

EGY = & F. (0,0)
“n X,Y\Y

at,
Ey™ = & F. 0,0
s X0
2
2 -
E("oY) = - Fx Y(O,O)
]
at,,at,

For central moments, replace x and y by x - E(x) and y - E(y)

respectively. Then the following central moments may be found:

2

a -
ar 2 XE),1-E()(0O
‘1

Var(x) =

2
Var(y) = 2

se.2 X2, Y-Em (O
2
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Cov(x,y) = X-E(x),Y-E(y)(o'o)
at,, 3t
12°%2
Proceeding in a similar manner will yield any degree of
moments of higher order.
Progerties: If Z = X + Y, where X and Y are independent, fx(t) is the
moment generating function of X, and ?Y(t) is the moment generating

function of Y, then the moment generating function of fz(t) is given

as
F (t) = Fyo(e)-Fy(t).

Characteristic Function: In cases where the integral in (1.15) does

not exist, moments may still be found in an identical fashion by use
of the characteristic function. The characteristic function is
identical to equation (1.15) with t, and t, replaced by it, and ity

respectively.
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;?f 1.4 Transformations of Random Variables
?Eis Emphasis in this area is on the use of integral transforms to
‘tif obtain probability density functions for certain transformations of
i:j ranjom varjiables. First, a review of some related probability

:;E: concepts should be made.

o

e A one-to-one transformation h(x) from a set S into a set T

1,

0 means that for each y, an element of T, there exists one and only one
Y,
e
jﬁ: x, an element of S, such that h(x) = y. When a function h(x) is a
\c
‘-0
~, one-to-one transformation from a set S to a set T, then the inverse
[
:ﬁ; transformation h-l(y), from T onto S, exists and h-l[h(x)] = X,
A Tl
2
- Stating that a set S in the set of positivity for a transformation
’.-:'
?f h(x) means that S is the set of values, x, for which h(x) is positive.
{
- Two random variables X and Y are independent if their joint
.-\_
-y
{iﬂ probability density function fx y(x,yY) equals the product of their
’
s marginal density functions fx(x) and fY(y). This means that any
)
v variation in X will in no way affect the outcome of Y, or vice versa.
s
(O
{é{ Theorem 1.3: Let X be a random variable with continuous probability
“:: function fx(x) and suppose that y = h(x) is a one-to-one
4
¢‘ transformation from S, the set of positivity of fx(x), onto T, the
-
-i:' image of S under h(x). If h'l(y) is differentiable and its derivative
.:,;.:
:’:: is continuous on T, then the probability density function of Y may be
[
AJAN given as
'J'..
>
e
_.'.:.
o
o
T
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f i1 daley) ,yer
dy
fy(y) =

0 ,else

Theorem 1.4: Let X = (X,, X, ... X.) be a set of k random variables

having the joint continuous probability density function fx(i)‘ Let

Y = h(x) ={h;(x), hy(x), -+ hy(x)} be a set of relations forming a

one-to-one transformation from S, the k-dimensional set of positivity
of f ., onto T, the k-dimensional image of S under h(x). The inverse

transformation exists, §f1 = h’l(z) = {81(1)' 82(¥)s «oo g}, If

the partial derivatives of h'l(z) exist and are continuous,

)
By = 3y; {8i(y1s ¥25 <o+ )} 1,3 = 1,2,...k

then the joint probability density function of Y is given by

fela1 @ 800 -+ g 1] e

0 ,else

where J 1is the Jacobian, the determinant of first partial derivatives,
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Using Theorem 1.4, one can find the distributions for the sum,
product, difference, and quotient of two jointly distributed random
variables.

Example 1.1: Suppose the probability density function of Z = X/Y is

desired. Let W =Y so that X » ZW and Y = W and

ax/3z 3x/dw w2z

J =

dy/3z dy/dw 01

By Theorem 1.4, for the approprate ranges of z and w,
£, w(2) = g y(zw,0) |3 |

The marginal distribution of 2 = X/Y is found by integrating the above

joint distribution f, (z,w) over the proper range of w:

fz(z) = {. fX.Y(ZYoY)Ydy

Notice that if W = X so that Y = W/Z then the determinant of the
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Jacobian equals -w/zz. Then

f,(z) = {“ (X/zz)fx’Y(x,x/z)dx

The point here is that the two forms for calculating fz(z) are
not identical by a simple interchange of the x and y variables. This
is the only case where the symmetry does not hold. While both forms
are certainly valid, the first form is the one most commonly seen in
the literature and is usually the most easily applied.

Using Theorem 1.4 similarly to find the distributions for the

difference, product, and sums of two random variables gives the

following theorem (41).
Theorem 1.5: If X and Y are jointly continuous random variables with
probability density function fx,Y(x'Y)’ then

(1) the probability density function of the random variable

Z=X+Y is given by

fz(z) = {o fx’Y(z'Y:Y)dy = {Q fx,Y(xpz'x)dx

If X and Y are independent, then

£2(2) = [ Ex(z-y)iy(y)dy = [ fx(x)fy(z-x)dx

b
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SRS (2) the probability density function of the random variable

Y ‘_'-

. Z=X-Y is given by
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£,(2) = L fx’Y(Zﬂr.y)dy = {a fx’y(x,zhc)dx

If X and Y are independent, then

fz(z) = {O fx(z+y)fY(y)dy = {o fx(x)fY(z+x)dx

i e e X WRSA SN S $ .LCd S

(3) the probability density function of the random variable

Z = XY 18 given by

f,(2) = J 'y-llfx'y(z/y,y)dy = [ ‘x-1|fx,Y(x,z/x)dx

T A Y e

If X and Y are independent, then
® -1 "1
£22) = 1|y |exa/meynay = 1 [x7H oy

(4) the probability density function of the random variable

- Z = X/Y is given by A
| 4
- o [ J
£x(2) =/ |ylex, y(zv.y)ay RS-
|
¢ If X and Y are independent, then

'.“‘

() = 1 |ylexntymdy = 1| 5| tgootax.
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Theorems 1.4 and 1.5 have been applied to many distribution
problems. However, each case must be treated separately and special
care must be taken to determine the proper integration limits and
ranges for the variables. A look at some simple examples can help to
clarify this point.

Example 1.2: Consider the bivariate standard normal given by

’ 21/1-p 2(1-p2)
o
e -~ {x,y <®, p#1l,-1
(At
"‘-
‘- Suppose we wish to find f,(z) where Z = X/Y. Then
= -
f22) = /_|x|fy y(x,2x)dx
[ J
= J——z I exp { °12 (x2 - pzx2 + zzxz)}|x.dx
21/ 1=p° - 2(1-p%)
Let a = (1 - 2pz + 22)/2(1-92). Then
1 ® 2
f,(2) = ;] x e dx
2n l-pz ~o
- —1 _ 1
2“/&-92 a

. /12

(1l -~ 2pz + zz)
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i;: This is equivalent to Craig's (28) derivation if o = gy = 1 and
‘o
x
~:.' My = Wy = 0.
s
'?? Example 1.3: Now consider Morgensterm's bivariate uniform density
,:A given by
\f
2
o frg(y) =1 +p(2x - 1)(2y -1) 0<xy<l

)

Let Z = XY. Then

“~

. -

T -1

::: fz(z) = {o IY lfx’Y(Z/Y9Y)dy

i

@

ﬂ: The lower limit of integration of y is determined from the relation
W:-‘:

- x=2z/y, 0<x<1, 0<y<K1

2 - -

e Since x { 1, the lower limit on y is z. Furthermore, since x { 1 and
(mi y {1, the maximum value of z = xy is 1. Then
’}5 1

4 £,(2z) = [ (1/y)[1 + o(22/y - 1)(2y - 1)dy

z

2

o = [p(4z + 1) + 1]1n(1/z) + 4p(z - 1) ,0<z<1
k;: 1f p = 0, then X and Y are independent and fz(z) reduces to

d

L £,(z) = -1n(z) , 0<z<1

72

.’Q

::- This is the same form as that derived by Springer (17:91-94) for the
.g; case of the product of two independent identically distributed uniform
A variates.
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A Example l.4: Suppose the probability density function of Z = XY is
AR —_—
SS90
S desired where X and Y are jointly distributed by Kellogg-Barnes III
A
o
distribution given as
4 ,
Y -
o £y y(x,y) = B 5 o7(0x + Bxy) x,y>0
N ' () a,850 , c>2
T

(AN
3

from Theorem 1.5, case (3), the distribution for Z is given by

o o~

oo
o .
SN - 1
£,(2) fo - fx’y(x,z/x)dx
o
N 8 8z  .e-l _-ax
e = B3 TPZ 5 4Ol 7% ¢
RN r(c) 0 x
-
% ]
I'd = fe Bz z>0
{
25
'_"_; which is the univariate exponential distribution with parameter 1/8.
;E:: Example 1.5: Consider the Kellogg-Barnes II distribution given by
.
e fx y(X.9) = BaZ e~(ox *+ By/x) X, >0
:_:.: ’ 0.,8)0
; From Theorem 1.5, case (4), the distribution of the random variable
N Z = X/Y may be found by
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£,(z) = fo ey y(2zy,y)dy

= Ba2 e~B/z ye~92Y 4y
0

- (B/ZZ)e‘B/z

Now suppose the reverse is desired, that is, the distribution
of Z = Y/X. Theorem 1.5, case (4), still applies by using a simple

change of variables and fz(z) is given by

£,(z) = fo xfy y(x,2zx)dx

= 8ol e BZ 5 xe"OX 4«
0

While Examples 1.4 and 1.5 are relatively straight forward,
Examples 1.2 and 1.3 show that the use of Theorem 1.5 for products and
quotients of dependent variables can be an arduous task. For products
and quotients of dependent variables the task can be simplified
through the use of Mellin transform techniques as will be shown in the

next chapter.
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CHAPTER 2

Application of Integral Transforms to Statistical Analysis

2.1 General Remarks

Section 1.4 of Chapter 1 shows that using convolution
integrals for the transformation of variables to find the distribution
for the sum, difference, product, or quotient of two random variates
can be a difficult task. This chapter outlines techniques to simplify
the problem by utilizing integral transform techniques. A review of
integral transforms and the associated techniques for finding
distributions of algebraic combinations of independent variates is
presented followed by a discussion of the extension to products and
quotients of dependent variates using double Mellin transfora
techniques.

Since this dissertation i{s devoted to products and quotients
of dependent variates using double Mellin transform techniques, the
double Mellin transform is developed more completely. Theorems
governing its use as given by Fox (10) and Reed (16) are presented.
Extensions to univariate Mellin transform properties are presented for
the double Mellin transform. These properties prove useful to Mellin
transform manipulations in later chapters.

Finally, theorems are given for the distribution of products,
quotients, and rational powers of two dependent variates. Theorems
are also presented for products, quotients, and powers of variates

from two bivariate distributions which are pairwise independent.

30
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2.2 Integral Transforms

2.2.1 Double Fourier Transform: (17:67-75;106:76-79)

A real function of two variables fx y(x,y), where each
*
variable 1s defined over the whole real line, is doubly Fourier

transformable i{f the integral

I f f X,y e dxdy
‘ X,Y( ’ )l
-0 =00

converges for some real valuz for kl and kz. Then,

® = it;x + ity
F. ,tz{fX.Y(x'y)} =f [ e

1 -gd =

fx’Y(x,y) dxdy

is the double Fourier transform of fx,Y(x,y). Ftl,tz{fX.Y(x’Y)} is

called the bivariate characteristic function of fx Y(x,y), and
1]

eitlx + it2y is called the kernel. The inversion integral is given by

L htie k+ie 'itlx - 1t2y
EX,Y(X’Y) == [ f e

> Hete ket F(tl,tz)dtldtz

2.2.2 Double Laplace Transform: (106:221-228;34:452-458)

A real function of two variables fx (XY, defined everywhere
L]

for x > 0 and y > 0, with x and y real, is doubly Laplace

transformable if the integral

.........

L}

(2.2)

.." RN y T A ’ el :":"‘ RO ASARC Ot
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(2.1)
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32
&
R
:::-:;: ® @ =k.x - k,y
et I | e 1 2 £x y(x»¥)|dxdy
o 00 ’
(
.:,'.-
o converges for some real values of k, and ky. Then
b5
N © @ -r)x - r,y
L {fg y(x, N} =S [ e fy ¢(x,y)dxdy (2.3)
{ - t),ry iKY 0o X, (%
X
E:: is the double Laplace transform of fy y(x,y), where r; and r, are
‘ complex variables.
b
"-.f}: From this definition it can be shown that
N
'-“-'
R -1
..E\‘ Lrl’rz{fx’.{(ax,by)} = (ab) L(l’lla,rzlb) (2.4)
\
._.~ The double Laplace transform has been used in the past for
AN
:,:_ functions of x and y where x and y are independent. Only limited
'I\-!
""' consideration has been given to dependent functions of x and y.
"‘ 2.2.3 Double Mellin Transform: (17:151-156;10;16;19)
">
AN
:::::: A real function of two variables fx.Y(*'Y)' defined everywhere
.'-‘4. for x > 0 and y > 0, with x and y real, has been defined by Reed (13)
- to have the double Mellin integral transform given as
g
:-' *® ® 81-1 82-1
" M(8,,8,) = [ [ x £ x,y)dxd (2.5
,' 1282 00 y x’y( 3/ y )
.. and its inverse as
v,
oo
Q.
..”
.r'_:.-
e
EAS
.)-,:.-
Q:
~
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h+io k+ie =8, -s

2
/ / x y M(s,,s,)ds.ds (2.6)
(271)2  h-i® k-ie 172772

Ex,p(xy) =

The conditions for which (2.5) and (2.6) are valid are stated
by the following theorems. The proofs are given by Reed (16) and Fox
(10).

Theorem 2.1: If

(1) M(sy,s,) is a regular function of both variables s;,s, in
the strips a < S <b, c < S, <d
-m -n
(11) in these strips M(s,,s,) = °(|s1‘ )0(|sz‘ ) for some
@ >0, n>0, as [s;| and |s,| tend to infinity independently of each
other;

(i11) a<h<bandc <k <d

w o
(iv) i. {. H(sl,sz)“dsl‘\dsz\ exists when taken along
any lines parallel to the imaginary axis in the strips defined in (i)

(v) fx’Y(x,y) is defined by equation (2.6)

then

® o g -] 32-1
M(s),s9) = fo IO x y fx,y(x,y)dxdy

is true.

eV eV a ' a®*n"aa® T e a T a Y
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v:: Theorem 2.2: Let X denote a part of the complex x plane which is

Lo bounded by two lines through the origin and which includes the whole

of the positive real axis from 0 to +®w. Let Y denote a similar region
in the complex y plane. If with x in X and y in Y the following
conditions are satisfied:
(1) there exists two real numbers h and k such that

xhykfx’y(x,y) is a regular function of both x and y;

(i1) xhykfx’Y(x’y) - o(|103x|‘m)0(llogy|'“), m>0,n>0, as x
and y tend to infinity independently

(1i1) ff|xh yk fx'Y(x,y)‘|dx|‘dy‘ exists, when taken along any
lines in the X and Y regions

(1v) M(s;,s,) is defined by equation (2.5)
then equation (2.6) is true

These two theorems give an exact analogue to the single Mellin

integral transform theorems.

2.2.4 Mellin Transform Properties

By making the change of variables x=u/a and y=v/b in the

defining integral (2.5),

Mg o8, 0 ElaxiBY) ) = I, fluwde = v ds,ds,
-8, =8
=a lp 2 My { £(u,v) ) (2.7)
1282

Since multiplying f(x,y) by x2y® merely results in changing s
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to s +a and sy to 32+b, we also have the following relation:

M (= £(x,y) } =¥,

51,8, { f(x,y) } (2.8)

1+a,sz+b

For a,b > 0, making the change of variables xsul/a and y-v]'/b yields

. = /a-1/a s,/b-1/b
M (£(x2 YD)} = 1 S £(u,vyu ! v 2 ((ab)~lul/a-1 1/b=14,40y
2 0

Sl' 0

®» ® s{/a=1 s,/b-1
e (a0l S/ fu,v)u } v 2
00

dudv

- -1
(ab) Mslla,szlb{ f(u,v) } (2.9)

The Mellin transform also has certain unique properties for

derivatives and integrals of functions. By definition

a @ o 81'1 32_1
M {3, f(x,y) } =S x y
S),sy ax (09 00

(2 f(x,y) ] dxdy
1,8 d

x
If [(3/9x)f(x,y)] is continuous for y constant and 0 < y < «® then the
equation above can be written (89;92:179-180)

b 82‘1 o 31'1

9 9
Mg syl B ECB) 1 =Ty fo x © 3x f(x,y) dxdy

integrating the inner integrand by parts yields

® g,-l

3 2 [f( , 8i=1|® ® g,-2
87 axf (X7} = fo y X,¥)x% |

=(8,-1) / «x ! f(x,y)dx]dy
0 0

'
ny
o
B
-1
1
-

v
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If there exist 91» 99 such that

81‘1 81-1
lim x f(x,y) =0 ; 1lim x f(x,y) =0
x-0 X-—>o

when 0, < Re s; < 0, and if M’1’1’32{ f(x,y) } exists in that band,

then

)
= . -(s,-1)M f } 2.10
31’52{ 3x £(x:¥) } = =(8)-1) s1_1’52{ (x,y) (2.10)
Equation (2.10) can be written conveniently in terams of
integrals rather than derivatives. Equation (2.10) can be written in

the form

"’1’52{ f(x,y) } = (sl-l)Msl'l'sz{ fx £(u,y)du }
Replacing s, by s,+1 yields
N -1
Msl’sz{ fx f(u,y)du } = 8 M’1+1»92{ £(x,y) } (2.11)

Similarly, 1f [(3/3y)f(x,y)] 18 continuous for x constant,

0 < x < ®»and 1f there exist o,, g, such that
s,-1 8,-1

Hay 2 f(x,y) =0 ; llmy?2 £(x,y) =0
y—-0 Yy

when O3 < Re 8y < 9, and 1if Msl’sz_l( f(x,y) } exists in that band,

-"-- '.n AN
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then the following hold.

9

Msl'sz{ Ix f(X,¥) } = -(sz-l)Hsl‘sz_l{ f(x,y) } (2.12) |
N -1

“51’52{ fy £(x,v)dv } = s, M91»92+1{ £(x,y) } (2.13)

Higher derivatives can be dealt with in a similar fashion.
Applying (2.11) and (2.13) iteratively, the following property for a
double integral can be written.

W o

/ £(u,v)dudv } = (slsz)'1 M
xy

M { £(x,y) } (2.14)

31’32{ f sl+1,32+1
Equation (2.14) above is a useful property in that it may now
be used in developing the cumulative of the H-function distribution.

The properties developed above are summarized below.

-8y  "82
Msl’SZ{ f(ax,by) } = a b Msl,sz{ f(x,y) }
My {x%Y° £(x,y) } o= {fxuy) }
81’92 51+a,32+b ’
a b - -1 )
M31’32{ f(x,y ) } = (ab) M51/3,82/b{ f(x,y) } : a,b>0
”» @ -1
Msl,szf fxfy £(u,v)dudv } = (8;8,) “sl+1,32+1{ £(x,y) }

2.2.5 Mellin Transform of Appell's Functions: (16;8:232)

Reed (16) used the double Mellin integral transform to obtain

- N WA _..'_.r Qg ® @y =)
DRI SR AN ALY o
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the following transforms for Appells hypergeometric functions of two

variables:

® ® 81°1 82-1
I x y F,(a,b,b';c;-x,-y)dxdy
00

r(c)P(sl)P(sz)r(a-sl-sz)r(b-sl)r(b'-32)
- (2.15)
r(a)r(b)r(b')r(c-sl-sz)

when O < Re(s;+s,) < Re(a), O < Re(s;) < Re(b), O < Re(sy) < Re(b')

® ™ 81-1 32-1
I 7 x y Fy(a,b,b’3c,c’;-x,-y)dxdy
00

P(sl)r(sz)r(c)r(c')P(a-sl-sz)r(b-sl)r(b'-sz)
P(a)P(b)P(b')P(c-sl)r(c'-sz)

(2.16)

when 0 < Re(s,+s,) < Re(a), O < Re(s;) < Re(b), O < Re(s,) < Re(b')

® ® 31-1 92"‘1
I 5 x y F3(a'a' »b,b'3c;x,-y)dx dy
00
[(81)T(85)T(c)T(a~3))T(a"-87)T(b=51)I(b" -35)
P(a)r(a')r(b)r(b')P(c—sl-sz)

(2.17)

when 0 < Re(s;) < min(Re(a), Re(b)), O < Re(s,) < min(Re(a'),Re(b"))

1Y

CORCREACRAALY, B T, et e st oo o "'-.-\.xm[ ARV AL YO YO Y R T SN T IS 0T it
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F I ox y F,(a,bjc,c';~x,~y)dxdy
00

P(sl)P(sz)F(c)F(c')P(a—sl-sz)r(b-sl—sz)

r(a)r(b)P(c-sl)r(c'-sz)

(2.18)

when 0 < Re(s;+s,) < Re(a), 0 < Re(s;+s,) < Re(b).

Equations (2.15) - (2.18) above may also be derived by making
appropriate sign changes in the formulas given by Erdelyi (8:232).
The importance of these transform identities will be shown later in
Chapter 3 when special cases of the bivariate H-function are
identified.

2.3 Integral Transforms for Independent Variates

From the examples it can be seen that using Theorem 1.5 can be
a difficult process. Integral transforms can help simplify the
process. For the case of X and Y independent, the following formulas
have been most helpful in solving algebraic combinations of random
variables.

Let F., L., and M_ represent the Fourier, Laplace, and Mellin
integral transforms of one variable respectively. Then special

properties of these transforms are

Felfg(x)} Po{gy(y)} = F.{ {. fx(x)gy(y-x)dx }
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Lr{fX(X)} Lr{gY(Y)} - Lf{ / fx(x)gY(y—x)dx }

-

Mg () Mygy(y)} = (S x"! £y (y/0dx }

Combining these formulas with Theorem 1.5, the following results can
be derived:
(1) the probability density function of the random variable

Z = X+Y is given by

£,(2) = By HOFL(£,(0)] Flfg()] }

or

£,2) = L7 L [£200] LIfg(N] ] x,3,2 20

1

where F, ! and Ll’ are the inverse Fourier and Laplace transforms of

1
one variable respectively.
(2) the probability density function of the random variable

Z = X-Y is given by
£,(2) = B, F [£4(x)] F [£4(-y)] }

where Fl'l is the inverse Fourier transform of one variable.
(3) the probability density function of the random variable

Z = XY is given by

£2(2) = MM [£200] Mylfy()] ) ®,3,2 20

--------------------
!!!!!
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where Ml-l is the inverse Mellin transform of one variable.

(4) tha probability density function of the random variable

*
-
4y

NER Z = X/Y is given by

£,02) = o H ML 00] My [£(] )} x,9,220

where Ml'l is the inverse Mellin transform of one variable.

A distinct advantage to transform techniques is that these
above formulas can be easily extended to more than two variables.
However, these formulas are restricted to cases where X and Y are

independent.

2.4 Mellin Transforms for Dependent Variates

In 1957, Fox (10) applied the double Mellin integral transform
to the theory of bivariate statistics and derived the following
conclusions for relations of two bivariate distributions.

The expectation of ¢(x,y), E[4(x,y)], 1s defined by
(31:260-265)

E(¢(x,y)] = J J ¢(x,y)f(x,y) dxdy
00

EAA L e A
‘l."r" l" ] ‘.'l' "lj. .

o

8,-1 s,-1
If (x,y) = x > y 2 , then E[(x,y)] is the double Mellin transform

4
"

$: definition given by (2.5). Let fxl,Yl(xl’yl) and fxz,Yz(XZ’YZ) be two
- 6
3& bivariate density functions having the double Mellin transforms
?
%.
‘r' M,(sy,87) and My(s,,s,) respectively, and where x;, x5, ¥;, y3 > O.
t:: Further, assume X,,Y, are independent of X,,Y,. Then
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E[¢l(x1’y2)¢2(x2'y2)] = E[¢1(x1tyl)] E[¢2(x2’Y2)]

since X,,Y, is pairwise independent of Xp,Yy. If 91(xy,¥y)) =
51’1 52'1 31-1 82"1

X, Yy and ¢(x2,y2) =Xy Yy , then

sl-l Sy~-1
E[ (xlxz) (Y1Y2) ] = M1(31,32) MZ(SI,SZ)

The joint probability density function of (x1*2'y1yz) can now be
8,-1 S,-1
solved by substituting E[(xlxz) 1 (ylyz) 2 ] into the right hand

double integral of (2.6):

Fz u(2w) = MpT0 [ Mi(s),8p)Mp(s1,8)) | (2.19)

where Z = xlxz, Wo=YY,, and Mz—l is the double Mellin inversion
transform as defined by (2.6). Continuing in this fashion, Fox showed

the following to be true.

£ w(2ow) = M0 [ M (2-8),85) | (2.20)
for Z = 1/x1 and W = Y,

£ u(zw) = Nz'1 [ M,(2-8;,2-85) ] (2.21)

for Z = I/X1 and W = I/Yl

-.;f.;(...’ ‘\.‘-J.'_'.- o “« ‘(\ J'\.' 4’4’ ...'\.‘~.- .-- o« \{- " , i v .. .". " ‘q NSRS TSR TY \..\. " \-.\. \-‘-._‘. '
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-1
fz'w(z,w) = Mz [ MI(SI,SZ)Mz(Z‘Sl,Z‘Sz) ] (2.22)
for Z = x1/X2 and W = Yl/Yz

Subrahamian (19) combined the work of Fox (10) to derive

results for cases of products and quotients of two dependent

» -y
s AIINOARE M0 e e L8,
- e e s e e PR R

variables. Let X and Y be dependent random variables with probability

density function fx,Y(x,y) which is positive in the first quadrant and

zero elsewhere. Further, suppose that the double Mellin transform of

fX,Y(x’Y) exists and is given by M(s,,s;). If ¢(x,y) = x3"1ys~1 then

i g L g T .-
DOSAOMELLLIS ST

W o
E( x$71y8"l y .y x3"1ys-1 fx,Y(x,y) dxdy

; 00
{
S .
: Ms,s{ fx,Y(x’Y) }
X Let Z = XY, then
é -1 1
5 E[ x> 1y37l | = g[ 2571
i Substituting E{ 2571 ] into the inversion integral for the univariate
;i Mellin transform, the density function for Z can be found.
f‘ Specifically,
¥
'yl
{ 1
- £,(z) = M," [ M(s,s) ] (2.23)
. z 1
o
X where Z = XY and Ml-l is the univariate Mellin transform inversion
q operator.
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o Similarly, the probability density function of the random
variable Z = X/Y is given by

s £,(2) = M,"1[ M(s,2-8) | (2.24)

A The work accomplished by Fox and Subrahamian can be extended

to n pairs of dependent variables which are pairwise independent.

H

’ (3
r

2
a
7

This work, shown in the following theorems, is similar to that done by

[, -‘ﬁ
'-' }

2
P4

Carter (3) for independent variables. Theorems extending

1"
.

’
e

Subrahamian's work to raise dependent variates to rational powers are

o
’..'k

also given.

- »
'ﬁji

Theorem 2.3: If X and Y are dependent continuous random variables

—_

with a bivariate probability density function fx,Y(x’Y)’ x,y > 0, then

0

the bivariate probability density function of Z = X2 and W = Yb, a,b

[ i)
3
()
0

rational, is given by

‘I ‘l

'. » ...l‘..lQ.'l.

Y

-1
M, "asl-a+1,bs2-b+1{ fx,y(x:¥) }

fz’w(z,w) = {2.25)

z,w> 0

-‘. 'N
ety

O

l.b

otherwise

{
o

A

A

Proof of Theorem 2.3

h] 'u._')

The Mellin transform of the probability density function

. "l ..

fz,w(z,w) is given by
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M { £, y(z,w) } =/ J £, (z,W)z
z,W 00 Z,W

51-1 82"1
w
81282

dzdw

31"1 32'1
w

= E[ 2z ]

where E is the expected value operator. From the definition of Z and

W, this becomes

31-1 32—1
My ol fzuzw =BG D)
® ® as,-a bsz-b
= fofo fx’Y(x’y)x y dsldsz
® ® (asl-a+1)-1 (bsz-b+1)-1
= fofo fx.Y(x’y)x y dsldsz

M
asl-a+1,bsz-b+1{ £x,7(%:¥) }

From the inverse Mellin transform, (2.25) follows.

Theorem 2.4: 1If X and Y are dependent continuous random variables
with a bivariate probability density function fX,Y(x'Y)' X,y > 0, then
the probability density function of the random variable Z = XaYb, a,b

rational, is given by

-1
! Mas—a+1,bs-b+1{ fx,y(x:¥) } z>0
f2(2) = (2.26)

0 otherwise
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Proof of Theorem 2.4

Let U=X? and vV = Yb. From Theorem 2.3

fU,v(u,v) = Mz-l (Mg

1-a+1,bsz-b+1{ fx,y(x¥) 1 1

from which it follows that

M { fU,V(“’v) } =M

$1,89 as

1-a+1 ,bsz-b+1{ fx’Y(x’y) }

Since Z = UV, applying Equation (2.24) yields

£o(2) = My TH M L gy y(uv) ) )

=M "l M

1 as-a+1,bs-b+1l fx y(x:¥) } ]

Example 2.1: (19;17:154-156)
Consider the bivariate standard normal distribution. For

X,y > 0, the double Mellin transform is

® o g,-1 g,-1
1 1 2 -1 2 2
81,89) = ———=J J x y exp{ —_— (x“-pxy-y )}dxdy
MX’Y( 1°72 21:/1-92

2(1-p2)
2 [(31+82+1)/2‘1]
F(sy)r(sy)(1-p ) oF [ ) 8y 8;+s,+l . 2]
(8,+8,+1)/2 2T P
2 T(L/2)T[(8 +s,+1)/2]

From Theorem 2.4, for Z = X/Y, a = 1 and b = -1, The Mellin transform
of fz(z) is then given by

Ma(s) = Mg 5 gl fy,y(x9) }

AV YA

b
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. I(s)r(2-s) /i 7. s .28 .3 . . 21
TTDTGrR) ) 2"1[2 ; 2 1)

The transform above is valid for z > 0 only, but by symmetry,
the inverse for z < 0 may be derived also. Subrahamian completed the
inversion to give

vl - 92

fz(z) =
1(l - 202 + 2

2y

This is exactly the form derived in Example 1.2 for O = 6, =1, and

y

ux-uy.0¢

Example 2.2: Consider again, Morgensterm's bivariate uniform density.

Fx,y(x¥) = 1 +0(2x - 1)(2y - 1) 0<x,y<1
.
"
The double Mellin transform of this density is given by S
» e g;-1 32-1
Mx v(81:89) = J I = y [1 + p(2x - 1)(2y - 1)]dxdy
’ 00
1 p(s, - 1)(s, = 1)
- + 1 2

8187 8183(sy + 1)(sy + 1)

If one is interested in the density function fz(z), where Z = XY, then

from Theorem 2.4 a = b = 1. The Mellin transform of fz(z) is then

LR P
o

A \{'-f$ ‘e
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Mz(s) = Ms’s{ fx,Y(x’Y) }
1, ots - 1)2

g2 s2(s + 1)2

The density function of f,(z) is found by performing the inverse

operation of Mz(s).

h+i¢{£ . pz-s (s - l)zlds

£,(2) = % f
z 27 p-fe L g2 s2(s + 1)2

The density of f,(z) may be found by performing the inversion integral
directly, or by summing the residues of two terms at s = 0 for term
one and s = 0, s = -1 for term two.

For term one, R1 = residue at s = Q.

= 1n(l/z) 0<z<1

s =0

For term two, RZ = residue at s = 0.

-3(g - 1)2
Ry =4 p27(8 - 1) = -4p + pln(1/2) 0<z <1
ds (s + 1)2 s =0

For term two, R3 = regsidue at s = -1.

= 4pz + 4pzln(l/z) 0 <zl

R, = 4 pz"5(s - 1)2
s = -1

ds s2

Since all residues are valid for 0 <z {1, fz(z) is equal to

the sum of R,, Ry, and Ry. Summing these terms and rearranging, f,(2z)

is then given by

P IS VR I T A R AT It ST TR ) PR s ing-(.-,—.-('Q(-q'-_’-_-- L, . . .
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£,(2) = [ p(4z + 1) +1 ] In(1/z) +4p(z - 1) 0<z<1

(_ which is the same density function for Z which was derived in Example
103.
Theorem 2.5: If XI'YI; X5,Yp3 «ee; XY, are n pairwise independent

{ continuous random variables, X,,y, dependent for all i, with bivariate

probability density functions fl("l’yl)’ fz("z'yz)' ceny fn(xn’yn)’

g
3
a'e

l:'.

Xi»Yy >0 for { = 1,2,...,n , then the probability density function of

the dependent random variables

n a n b
zZ= 0 X Loy wanoy !
{=1 =1

EAAANNN

9
"

’
! ",
1,46 0
Bl RS o NNl N R BR B BBl F Al ) B bk S A B - B W W e Y

( for a, b, rational, i=1,2,...a, is given by
- T
o H-[IIH {f(x,y)}]zw>0 '
- 2 (=1 21517a3+l,bysy-by+1” 1717 ’ :
o fz'w<z.') = (2027)
N 0 otherwise
">
.“.l
T
-~ Proof of Theorem 2.5
; The double Mellin transform of the probability density
A4
:.:'. function fz'w(z,w) is by definition
-.I
-_.J' ® ® 31‘1 82"1
y M dzd
) 31’92{ fz,u(z,w) } = fofo £2,u(z,w)z w zdw
:: 1 1
Sy sy~ 89—
:i = E[ 2z 1 w 2
'’
\.'
.J where E is the expected value operator. From the definition of Z and
-
x|
d |
A .
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W, this becomes

n sl-l sz-l
M i y T o ]
81’82{ £2,w(z,w) } = Ef 121 (x4 Yy

and, since Xi,xj and Y(,Yy independent for all { # j,

n a;s,~-a b;s,-b
i1 °1 i%2 1
M { £, w(z,w) } = I E[ x y ]
81,8, fZ,W {m1 i i
n ®® azsy—a b;S,-b
i®1 <4 i®2 "1
= 1/ [ £ (x,,y,)x y dx,dy
1_1001111 i 171
n
= I M {fi(xi'yi)}

i=1 3181-31+1,b132-b1+1

Applying the inverse Mellin transform, (2.27) follows.

Example 2.3: Consider the Kellogg-Barnes I distribution given by

B+1 2 2
4a 2 2,8 _-a(x” +y7)
fx’y(X.}') =3 (BF1 (x* + y°) e x,y > 0
Letting r = x2+y2, the Mellin transform is given by
B+l = T/2 2 g +8,+2B-1  s;-1 s -1
- 17°2 1 2
M(s,s9) = "-?%m) fofo e % r cos® sin © dedr
B"’].r
a (8,/2)1(84/2) ® g +3,+28=2 2
L 2 1772 e % 2rdr

" AT(B¥1)I(s,/2+8,/2) '

Letting u = r2 and du = 2rdr, then

50
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a8+11'(81/2)l‘(32/2) o s /2+s,/248-1

M(s),85) = AT (B+1)I(s,/2+s,/2) " = ¢ u

ar(sllz)P(SZ/Z)F(B+51/2+SZ/2)
81/2+52/2

“r(8+1)r(81/2+32/2)a

Now suppose the bivariate probability density function of

Z = X)/X3, W = Y1/Yy is desired where X;,Y; and X,,Y; are distributed
according to the Kellogg-Barnes I distribution given above. Suppose
further that f,(x;,y,) has parameters a; = 1, 8, = 0, and £5(X,,¥;)
has parameters Gy = 1, By = B. Substituting the respective parameter
values into the Mellin transform for the Kellogg-Barnes I distribution
and from Theorem 2.5, a, = b1 = 1, a, = b2 = -1, the probability

density function of Z, W is given by

fz’w(z.w) = Mz-l[usl’sz{ £1(x1,¥7) } Hz-sl'z_sz{ £2(x9,Y2) }]

I [r(sl/Z)I‘(sz/Z)I‘(1-31/2)1'(1'32/2)r(3+2‘31/2'32/2) ]
2 1L (B+1)T(2-8,/2-3,/2)

. T(B+) -1[

P(2)P(SI/Z)P(SZ/Z)P(1-81/2)P(1-32/2)P(B+2—31/2-82/21
22r(g+1)

r(s+2)r(1)r(1)r(2-s1/2-s2/2)

Using property (2.9) for a = b = 2, then the density function for Z,W

above can be rewritten as

RTINS RTINS 3¢ A AL X, 00 BN CA A B G IR o SN IR OIS AT A

A
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4(B+1) W -1 [P(Z)F(sl)P(sz)P(1-31)P(l-sZ)P(B+2-sl-sz)]

2 2, .
£, u(z5¥0) 7 Y F(8+2)I(1)T(1)T(2-8,-5,)

n
Using Equation (2.15) for b = b' = 1, a = B+2, and ¢ = 2, the inverse
may be found directly and is given as

4(B+1) p
o2

fz’w(z,w) - 1(8+2;1,1;2;-22,-w2)
where Fl is Appell's hypergeometric function of two variables as
defined in Appendix B. The series converges when 'xl <1 and |y| <1.
For other values of x and y, the function can be evaluated by the
usual methods of analytic continuation.

Except for the normalization constant, the results given above
are identical to the results derived by Fox (10). The distributions

used by Fox were defined over the range -» ¢ x,y < =,

By applying Theorem 2.5 followed by Theorem 2.4 or Equation
(2.23), a general theorem for finding the distribution of a random
variable which is the product, ratio, or power of an arbitrary number
of bivariate randoam variables can be proved.

Theorem 2.6: If xl'Yl; xz,Yz; eeey X

n'Yn are n pairwise independent

continuous random variables, xi,yi dependent for all i, with
probability density functions £10%0,¥9)0£9(x9,¥5), ooy £.(x0,¥,),
Xivyy 2 0 i=1,2,...,n , then the probability density function of the

random variable

RO RN NN SN S S SRR N N L TN i L At L T AN
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) for a, b, rational, i=1,2,...,n, is given by

Pty n
1 N -1
’ M [nu {f(x,y)}]z>0

fz(z) = (2.28)

; 0 otherwise

] ‘l,"‘)" :?
e AEL

The proof of Theorem 2.6 follows directly from application of

o8
¥

(2.23) to Theorem 2.5.

‘

'.
[

The advantage of these theorems is that all the theorems

developed by Carter (3) are special cases of these theorems.

-

Therefore, these theorems provide the techniques for finding

r "
S A

£

xar

distributions of random variables which result from products,

.

quotients, and powers of an arbitrary number of independent and

s N
Pl

.
CRC )
.

dependent random variables. The only restriction is that any one

R S

i

random variable is correlated to at most only one other random
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variable.
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< CHAPTER 3

- The H-function

3.1 General Remarks

PP AR T An)

*& The H-function was first introduced by Fox in 1961 as a

;& symmetric Fourier kernel to the G-function of Meijer and was used

:J

(‘ extensively in physics and engineering. Carter (3) demonstrated the
%: importance of this function in statistical applications when viewesd as

1 probability distribution. The reasons for this importance are

® two-fold. First, the H-function is the most general special function,
- containing most of the other special functions as special cases. &
; Thus, anything accomplished with the general form for the H-function g
.\
(' is valid for all special cases. This allows the user to solve a
-
) K
Al problem for a large class of functions with a single derivation. K
u
\ .
- The second advantage to H-functions is readily seen in the o
> :
’ following sections. The proparties of the H-function are such that
f: they are reduced to simple ad justments of given parameters. The :
.r:‘ :
- simple parameter changes needed to find the Mellin transforms or the
'; derivatives of an H-function are trivial compared to parforming these -
t& same operations for various spacial cases. Indeed, the derivative of (
208
:: an H-function is another H-function. r
>
.
" Carter (3) used these properties to show that products, 2
‘; quotients, and rational powers of independent H-~function variates {
: yield a random variable which also follows an H-function distribution. A
-( )
; These results provide a robust method for determining algebraic
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combinations of independent random variables and strong motivation for
extension of this theory to bivariate distributions.

A G-function of two variables was given by Sharma (84) in an
attempt to generalize classes of functions of two variables. Since
the H-function given by Fox is not a special case of this function,
several workers have extended the univariate H-function and called it
an H-function of two variables. The H-function of two variables
contains as special cases most of the known functions of one and two
variables, Appell's functions, G-function of two variables, Whittaker
functions of two variables, H-function of one variable, product of two
H~functions, etc.

Chapter 4 presents the bivariate H-function distribution, a
bivariate probability function, expressed in terms of an H-functionmn
times an appropriate constant. Some of the classical bivariate
distributions are shown to be special cases of the bivariate
H-function distribution. Methods for solving resultant distributions
derived from products and quotients of dependent H-function variates
are presented. The important result is that such combinations result
in a distribution that is an H-function distribution of one variable.
Finally, methods for handling products and quotients of dependent
H-function variates from two bivariate H-function distributions which
are pairwise independent are given. Such combinations result in

distributions which are also bivariate H-function distributions.
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16
3:' 3.2 Definitions. (5:32;7:98;3:35;14:25;69:37;12) ‘
ey |
o Although thare are slight variations in the definition of the }
) ~\

Bt oy
U H-function, this paper uses the H-function of one variable given by
R Cook (5:32) and a slight modification to the definition of the

bivariate H-function given by Goyal (69:37). The H-function of one

variable may be defined by

i ™ sieON

N M,N
H(z) = H 0 [ 22 (9.,0,) 5 (bspds) ]
LR B 17
\’:t P,Q
\:_\'
~ v
L3 M N
I T(p+#.8) i1 T(1-6.0.s)
‘:’-"" 1 j:l j j js]_ j ] -8
; = [ z ~ ds (3.1)
S 2nri C P Q
< 1l I‘(Sj+0js) 1l T(1-9.-0.s)
{ juN+1 JeM+1 33
nAT
4‘.-" where C is a contour in the complex s-plane running from w-i» to wtim.
)
oy
+°7 The following assumptions are made.
A (i) 4, N, P, Q are integers such that O<M<Q and O<N<LP
N
i.}(. (i1) parameters 9j, #j are complex numbers and Oj, d?j are
o positive real numbers
).::, (iii) empty products are defined to be equal to unity
*q."
'-"‘; (iv) all poles of F(¢j+¢js) lie to the left of C, and all poles
1 -.(
~ of T(1=9,0,s) lie to the right
e The bivariate H-function is defined by
v,
o
NS
,.-b
."..
[ 2
¥
e
"
& %
A
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Err
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.E_.:::'; (e5,E4) |
P'-‘.J-
[ Mp,N My, Ny My, Ny x| (ag,4y) 5 (eq,Cy)
o H{x,y] = H
A9, P11Qp:P2sQ,P3.Q5 | Y (£1.F5)
b }
b (bi’Bi) ’ (di’Di.)
LS L .
"
g
‘W
{ 1 sy S2
= 2 LT X esIxg(=sp)xq(-sy=sp)x T Y T dsyds, (3.2)
AN (2ri) C1 ¢,
.)‘:o
N
-
2
® where an empty product is denoted by unity, Cl is a contour in the
.::::: complex S plane running from h-iw to h+iw, CZ is a contour in the
",
j:j-_' complex S, plane running from w-i® to w+i=, and
"y Ny
:::'_:f A r(bi-Bisl) i I‘(l—ai+Aisl)
‘4!“;- xl(-sl) = 1 1 (303)
s o1 O
) Ny+1 1+l
\.'
A
o) M, N,
e At I‘(di-Disz) A I‘(l-c1+Cisz)
2% xz(—sz) a ] 1 (3'l‘)
S 2 Q)
:.;:. il P(ci-ci.sz) il I‘(1-d1+Disz)
{_ N2+1 M2+1
pr
-.}..
v
o " Ng
o 17 T(e,=E;(8,+5,)) il T(l-f,+F, (s,+s,))
. 1 “ivT17R2 S SR R}
09 X3(-8y-8p) = 1 1 (3.5)
h'.'.' Q
. -3 =3
_}‘-;‘ A I‘(fi-Fi(sl+sz)) " T(l-e +E{(8,+s,))
e N3+1 M3+1
o
.
l"'
‘:’l
N7
D%
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The following assumptions are made.
(1) Mi’ Ny» Pi' Qi’ i=1,2,3 are non-negative integers such that
ON; <Py, 0M;<Qy, 1=1,2,3
(ii) parameters a,, by, ¢y, dy, ey, f; are real or complex and
parameters Ai, By, Cy» Dy, Ey, Fi are real positive numbers
(iiia) poles of r(b1‘3131)' (i=1...M)), P(ei-Ei(31+sz)),
(i=1...M3) lie to the right of C, and poles of I'(l-a;+As,),
(1’1- -oNl), r(l-fi+Fi(Sl+82), (i’lo-oNB) lie to the left
(iva) poles of F(di—Disz), (1=1...M2), r(ei—Ei(sl+52)’ (i=1...M4)
lie to the right of C2 and poles of I‘(l—ci+C132), (i=1...Ny),
F(l-fi+F1(sl+sz)), (i=1...N3) lie to the left.
If -s, is substituted for s; and -s, for s, and recognizing
that
a b
J £(-s8)d(-s) = [ f(-s)ds
b a

and perform that operation twice, then H[{x,y] may be redefined as

-81 =82
s [ 1 x(spxg(s)x3(sysg)x Y T dsydsy (3-6)
ard? ¢ ¢,

H[x,y] =

where

!
)
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%
ADR

~. M1 Ny

“.
e il P(bi+B'51) I T(l-aj-A;sy)

23 x(sy) = 1 C i (3.7)
b 1t Ta +hys,) 31 I(1-b,-B,s,)
i a s 1 -D;-bB.S

5 N +1 ii.lM+1 i 7i®1

RS 1 1

.\_

%S 22 I(d,+D;s,) ?2 F(l=c;-C;s,)

i¥is2) ¢ 17182

L Xy(s9) = 1 1 (3.8)
M ) Q

l.‘:u il r(ci"'CiSZ) i l‘(l-di-Disz)

> N,+1 Mo+1

N 2 2

[ )

L 4y N
o 17 T(ey+E;(sy+s9)) I T(1-f;-F (s +s5)) '
- Xa(S148,) = 1 1 (3.9)

; IL=17ME2
b Py Qy
: d T(f;4F.(8y485,)) 1 T(l-e;=E;(sy+S84))
. ROVERREE Gk s S 2P 175181782

3 3

o !
:-'_"_ Assumptions (i) and (ii) remain unchanged anl assumptions (iiia) and

(iva) are changed to
-%: (11ib) poles of I'(b;+B;s;), (i=l...M)), T(e;+E{(s;+sy)),
::::. (1-1...M3) lie to the left of C1 and poles of I‘(l—at—Aisl),
ﬁ; (i=1...N)), [ (1-f;-F;(s;+s5)), (i=1l...Nj) lie to the right.
e
:_::: (ivb) poles of r(di+9152)’ (1-1...M2), I‘(ei+Ei(sl+sz)),
e (1=1...M;) lie to the left of C, and poles of I(l-c;~C;s,),

: (1'1-°-N2), F(1-f;-F;(sy+s,)), (i=l...N;) lie to the right. ;
9 This second form of the definition has an advantage in that it

:;'.: is of the form of a double Mellin integral transform inversion

-y

@. integral. Form (3.6) of the H-function definition is used hereafter,
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because of the direct relation for the Mellin transform.
Form (3.6) of the H-function definition is useful in that its
Mellin transform is xl(sl)xz(sz)x3(s1+sz). It is clear from this

definition that the bivariate H-function can represent functions whose

«
LIS LA

L)
.

f

\

Mellin transforms have terms of the form X4(s +sy) or x3(-s-sj).
Practically speaking, it is very likely that a great many functions
will have Mellin transforms with terms of the form X4(sy~sy) or
x3(32-s1). It is possible to modify definition (3.6) to accomodate
such functions.

Using definition (3.6), if -s, is substituted for s;, then an

equivalent representation for (3.6) is

S
H(x,y] = -1—2 I 7 xl(-sl)KZ(SZ)x3(-51+52)x 1 y 2 dsldsz (3.10)

(211) C1 02

Similarly, if -S, is substituted for s, in (3.6)

-8 s
Hixay]l = =Ly 1 % (s)0xp(=sp)xy(s,78p)x ¥ dsyds,  (3.11)

(2ni) C1 Cy

where the poles of the X, and the x4 terms are interchanged about the

@

t;_ C, axis in the s, plane for (3.11) and the poles of the x, and the x,
;;; terms are interchanged about the C; axis in the s; plane for (3.10).
EE;Z From this it is clear that the mathematics of the H-function
E?? can handle funztions whose Mellin transforms have terms of the form
N

F;? x3(sl-s2) or x3(sy-81). Definition (3.6) can now be modified to

‘ii‘ accomodate such functions.
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Definition: A bivariate functional whose Mellin transform is given by

xl(sl)xz(-sz)x3(s1-sz) has the bivariate H-function given by

; LI

._: (ej_!Ei)

- My,Np My, N My, Ny | x| (a5,44) 5 (c4,Cp)

~, H{x,y] = ,H

(\ P1,Q15P9,Q7,P5,Q3 | ¥ (£;,Fy)

N (by,B;) 5 (d4,D4)

": - -

‘\Z

Qi

» 1 =8 S2

(] = 5 LT X(s)xp(sp)x3(s 4sp)x T Y T dsydsy (3.12)
N (2ri) C1 Cy

v

v,

}.l

;ﬂ where xl(sl), x2<92)' and x3(sl+sz) are defined by (3.7), (3.8), and
S< (3.9). Assumptions (i), (ii), (iiib), and (ivb) hold.

X

Henceforth, ,H(x,y] shall be used to denote definition (3.6)

A';‘.’L'

and 2H[x,y] to denote definition (3.12). The relationship between
IH[x,y] and ZH[x,y] is readily derived by observing that ysz may be .
rewritten as (l/y).82 in (3.12). Comparing (3.12) with this :
substitution to (3.6), it is readily seen that the following .

relationship holds.

HIx,y] = (H(x,1/y] (3:13)

3.3 Properties: (14:24-25;69:39-41;12)
Making a change of variable substitution in (3.2) yields the

following identities which are useful in bivariate manipulations:

Sy - SO P OROCHOMN ™Y AT AAA 7Y DL E R |

[ af LS L S W

b AL I LU NN R N T XS (oG X




M),Np Mg, Ny Mg, Ny | L/x

H[{x,y] = H

P11Q1,P2,Q,P3,Q3 [ L/y

H“l'“1»N2v“2’N3»“3 x

r
Q;,P1,Q2,P2,Q3,P3 | ¥

For k > 0, the following is true.

HMI'NI’MZ’NZ’M3’N3

r
P1|Q11P2DQ2’P3!Q3

k2

HMI’NI’MZ’NZ’H3’N3

r
P1,Q1,P2,Q2,P3,Q3

I NI ST ISR ATNA I N RIS

xk (ai,kA
yk
i (bi,kB
[ (e
x | (aj,Ay)
y (f
L (b;,By)

(e4,Eq)

(34,A1) 5 (c4,Cj)
(£4,F;)

(bi»Bi) ’ (di’Dl) J

(1-£,,F,)
(l-bi’Bl) H (l-di,Di)

(l-eisai)

(1‘ai,A1) H (l_ci’ci)J

(eiokEi)
i) 3 (cq,kCy)

(£, ,kF))

) 5 (dg,kDy) |

12Ey)

H (C19c1)

{Fy)

H (di’Di) R

0
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(3.14)

(3.15)
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- Maki the Me erty \ mya - :
:::’ aking wuse of e Mellin transform property \lsl’sz{ xTy fx,Y("'Y) } j
j Mslm,szm{ fx’Y(x,y) }, the following property is obtained. :.
3 _ v
- F (ei.Ei) .
< o
ﬁ a.n MI’NI’AZ‘NZ’M}'N? X (31»Ai) H (ci’ci) .
>~ X'y 1“ :
. PI’QI»PZoQZvP:;»Qg y (fi’Fi)

4 (by,By) 3 74.,0y) o
-l L - .
-': L]
] - - L]
3 (e+E;(wn) ,E,) "
e M. ,Ny,M9,N9,Mq,N +A m,A) ; c L
<] -y LNDM2N2 MY Ny x| (agkAgm,Ag) 5 (eg+Cyn, Cy) (3.16) ;

1 .
N P1.72,P5,Q5,P4,Qy | ¥ (£ +F (mtn),Fy) 2
. | (by+Bim,B;) ; (d;+D;n,D,) | r
{
:-' r ( n ;‘
o e Ey) ;
! mon M NpM2aNp M3 Ny | x| (ag,Ay) 5 (e4,C)) ]
- Xy ZH N
~ PI’Q19PZnQ29P3:Q3 y (fiypi) :.
(by,By) 3 (dy,D)) R
- '
q (ei+Ei(m-n),Ei) L}
A S
2 MyoNi My, Ny My, Ny | x| (a3%+Aym,A4) 5 (c4-Cyn,Cy) "
.;- - oM (3.17) 3
\: PllQl'PZ’Q29P3DQ3 y (f1+F1(m~n))Fi) ;}
-. i (b1+31m,81) H (di'Di“»Di)_ L
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P 3.4 Mellin Transform: (3:37;5:35;7:102;12) C;l
; Definition (3.1) of the H-function is exactly that of a Mellin %
. o]
( transform inversion integral so that the Mellin transform of the ]
j; H-function is directly given as B
: j
) M N i
{ L. 1 T(h+0s) Ul T(1-8,-0;s) )
- M {H(cz)} = 7% i=1 i=1 (3.18) N
k- P B 3]
" il T(9,40:8) 1 T(1-9,-9.3) N
) gaNel b U gy 1 :
' )
: Form (3.6) of the bivariate H-function definition is exactly 5
A O
: that of a double Mellin transform inversion integral, so that the &
Mellin integral transform of 1i[x,y]) is directly given as ‘
-t o
‘) [y
: M { H } = xy(81)%y(8,)%4(51%8,)8; 8y 2 (3.19) -
- s1,s, | 11[81%:82Y]1 J = X1 (81)x(8)%3(s¥s5)8; & :
N where x,(s;), x5(8y), and x43(sy+s,) are defined by equations (3.7), ;
) (3.8), and (3.9) respectively. N
~l B
i Under definition (3.12) for oH[x,y] and assuming convergence W
" of the integral in the definition, the Mellin transform can be found '
j by interpreting the bivariate H-function as the inverse Mellin ﬁ
> -81 -82 I‘:
v transform of the coefficients on x 'y + Then I
Cal F.
; 1l g -51( ’Sst )
- 2i(81%,82¥] = ——y X)(81)%9(-89)%3(81~89)(81X) 2,y) 1dss ~
- (271) C1 c2 -
- h 3
% where g
[

[ [ ]
: \
X} 4
A s
A ,
X i
. b
J LY
' »
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' 45 N3
‘X 1° T(e,+E,(s{-S,)) i~ T(1-f,-F,(s,-s,))
il : 1iT1v%17%2
I:‘r. x3(31"52) = 1 L i 1 2 1 (3-20)
NS Py Q3
g il I‘(fi+Fi(sl-sz)) il I’(l-ei-Ei(sl-sz))
SR Ni+l M3+l
5
‘:.‘:i Using the definition of the Mellin transform, one can express
i .' oH[81%,85y] in the form
N -sy -8

~1 1 2
rtf‘ 2H181%,89¥] = My "l X(s))xy(-55)%3(81=85)8; 8y |
o .
:r-- where Mz- is the inverse operation for the double Mellin transform as
PN 1
o defined by Fox (10). Tt follows that
\:‘ -8] -s2
‘ \ Msl,sz{ZH[glx’gZYI} = %1(81)%y(=89)%4(81-8,)8; 8, (3.21)
-
NN 3.5 Special Cases: (14:26-28;16:569-571;12)
.\.l\
=N
v From the results of Reed (16) on double Mellin transforms of
LN Appells functions, the following special cases for the H-function of
W,
:'}.-} two variables may be derived.
]
" -
e — —
*I".-
o (1=,1)
o 1,1,1,1,0,1 | x| (1-b,1) ; (1-b',1)
‘o 11
Y 1,1,1,1,1,1 |y (1-a,l)
X
-~ (0,1) 5 (0,1)
o
':';\:
N = T(a)I (D) (b')IF,(a,b,b';e;5x,-y) (3.22)
'»:'-; T(c)
[
N
‘.' Pl
A
l\l-'
e
W
R
T
2%
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i,1,1,1,0,1 x (1-b,1) ; (1-b',1)

IH
1,2,1,2,1,0 | vy (1-a,l)

L (0,1),(1=,1) ; (0,1),(1=",1) |

2 T(a)r(d)r(v') F

P(C)F(C') Z(a’b)b';C,c';"x,-y) (3-23)
- .
(1=,1)
1,2,1,2,0,0 X (1.301)9(1-b,1) ’ (1-8',1),(1‘b',1)
H
Yoi,2,1,01 |y | e
(o,1) ; (0,1)
= r(a)r(a;‘zggb)r(b') F3(a,a',b,b';c;~x.-y) (3.24)
1,0,1,0,0,2 | x c——m e
IH
0,2,0,2,2,0 y (l-a,l),(1-b,1)
| (0,1),(1=c,1) ; (0,1),(1=",1) _
= F(z;fﬁ:?) FA(atb;cic';'x"Y) (3.25)

In addition to the special cases listed above, Mathai and

Saxena (14:26) provide an H-function of two variables identity for
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67
Kamps de Feriét's function.
(1-cy,1)
1,B,1,B,0,A X (l-bi,l) ; (l-bi',l)
H
1
B,D+1,B,D+1,A,C | y (1-a,1)
(0,1),(1-d;,1) ; (0,1),(1-d;",1)
- -
A ar:...a
A B 1 A
1 T(a;) i T(b,Y(b:") B by,by';.e.bp,bp’
R T - LEL BB -y | (3.26)
c D C cl;oo-cc
il T(c,) I T(d;)l(d;")
1 t 1 i 1 D 4 L '
L 1°dy "3 -+dpsdp

The identity given by Mathai and Saxena is of a slightly
different form due to the fact that they used the definition of the
form of (3.2). The identity above results from the definition for the
H-function of two variables given by (3.6).

1f M3=N3=P3-Q3-O, the H-function of two variables breaks up

into a product of two H-functions.

M,,Ny,M9,N5,0,0 | x
1H

PvaI’PZ’QZaOOO y
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: M, ,N (a,,4;,)1 M,,N (c;,Cy)

o o 1{x| 11]32’2[,,' 1°Cy (3.27)
:-: PI»Q]_ (bi’Bi) PZ’QZ (di’Di)

C

:. = ﬂl(x).uz(y)

‘o

N

~ Here, H,(x) and Hy(y) are univariate H-functions as defined by
g? (3.1). Similar results hold for 2H[X,¥] .

::3.: - T

¢ M .

:,: " ].an,Mz,Nz;o’o 3 (ai:Ai) ’ (Ci'ci)

o 2

::: PI,QI,PZ,QZ,O,O yt+{ -

:' | (bi’Bi) H (di’Di)—

L\

\"‘

X M, ,N (a,;,A;) N,,M (1-d.,D,)

- - H 171 [ xl 171 ] -H 2*°2 [ yl i*"t (3.28)
::\' Plvql (bi’Bi) tapz (l-ci'ci)

j. From (3.27) and (3.28), it is clear that for M, =N, =P =Q,=0,

': i=2,3, the bivariate H-function reduces to a univariate H-function as
-

defined by (3.1). It then stands to reason that distributional

analysis of products and quotients of H-function variates in the
univariate domain is a special case of distributional analysis of
H-functions of higher order. This fact shall be demonstrated in

Chapter 4.
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Example 3.1: Consider once again Morgensterm's bivariate uniform

distribution. The double Mellin transform was given in Example 2.2 as
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0(51 = 1)(52 -1
Ux,y(s182) = ¥ + 1 + 1)
’ s1sp  S1S2(sp t+ 1)(sy
s (s+n+1)
Noting that (s + n) T(s + )
M (sy,5,) may be rewritten in terms of gamma functions.
X, Y7172
r(sy)l(sy) P (s)T(s)I(s1)I(sy)
M = +
My y(51282) T(s{+1)T(s,#1)  T(s +2)T(sy+2)I (s -1)T(s4~1)
While this form is not immediately expressible as a single H-function
of two variables, it may be redefined as a sum of two H-functions of
two variables.
fx’y(x')') = H [ x,y | + Hy[ x,y ]
where
r L A
y 1,0,1,0,0,0 {x | (1,1) 3 (1,1)
Ao Hil x,y ] =l
..'_{-. 1 ’ 1 1,1,1,1,0,0 |y | ==
e
L
Ny
;:::} and
1’-‘. —
-, ~—
=
.T—Q.V 2,0,2,0,0,0 X (2$1)9(-1’1) H (2v1)9(‘1v1)
e Hy %,y ] = oqH
: 2,2,2,2,0,0 | Yy | = mmm—
(o,1),(0,1) ; (0,1),(0,1) ]
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In this instance, it must be remembered that Hi[ x,y ] and
Hz[ x,Y ] are not H-functional representations of density functions,
but are two general H-functions of two variables, the sum of which is
a bivariate density representation.

While it is desirable to formulate fX,Y(x'Y) as a single
H-function of two variables, the representation above is still
valuable in that given Z = XY or Z = X/Y, f,(z) may be represented as
the sum of two H-functions of one variable which can be derived from
Hll x,y ] and Hy[ x,y }. Numerical inversion of H{[ z ] and
uz[ z ] can be accomplished by methods presented by Eldred and Cook.
Numerical evaluation of fz(z) can then be derived by appropriately

summing the inversions of Hl[ z ] and Hol z ].
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CHAPTER 4

The H-function Distribution

4.1 General Remarks

In this chapter a new bivariate probability density function
based on the H-function of two variables is introduced. The new
distribution, called the bivariate H-function distribution, includes
as special cases many of the more common bivariate distributions - the
bivariate gamma, the bivariate beta, and the bivariate Cauchy. Three
new bivariate distributions, called the Kellogg-Barnes distributions,
are also shown to be special cases of the bivariate H-function
distribution. Also, by extension, all the univariate H-function
distributions are special cases.

Formulas for finding the moments of the bivariate H-function
distribution and the normalizing constant are given. The cumulative
of the bivariate H-function distribution is shown to be another
H-function, a property that is not shared by other bivariate
distributions. Examples are given.

4.2 Definitions:

Definition: Consider a random variable Z with probability
density function given by

V'k H(cz), cz €S

f,(z) = (4.1)
2 1.0, otherwise

where H(cz) represents a univariate H-function as defined in scction

3.2, k and ¢ are real constants such that
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/ f,(z) dz = 1
0
and S is a subset of the positive real values u for which H(u) is
convergent. The random variable Z will then be called an H-function
variate or a random variable with an H=-function distribution
(3:41;7:103;5:84;17:200).
Definition: Consider the random variables X, Y with joint

probability density function given by

k H(g,x,8,Y] 81X €S 8,y €8
cHlB1%:89¥] » 3 1 82 2
fx,Y(x,y) = { (4.2)

0, otherwise

where rH[81x%,89) represents an H-function as defined in section 3.2,

k, 81, and g, are real constants such that

® ®
fofo fx’Y(x,y) dxdy = 1 ,
:%ﬂ and Sl,S2 are subsets of the positive real values u,v for which H(u,v)
E%E is convergent. The random variables X, Y will then be called
x%;‘ dependent H-function variates or random variables with a bivariate
H-function distribution.
4.3 Special Cases
Since the univariate H-function distribution may be expressed
as a special case of (4.2), all of the classical univariate
non-negative probability distributions studied by Carter (1972),
Eldred (1979), and Cook (1931) are special cases of the bivariate
- |
o
o
U
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H-function distribution. 1In addition, some of the classical

non-negative bivariate distributions may be expressed in the form
(4.2). Converting a probability density function into its H-function
form is accomplished by taking the Mellin transform of the density
function and arranging the transform such that it is products and
quotients of gamma functions. The H-function form may then be
identified by taking the inverse Mellin transform.

(i) McKay's bivariate gamma distribution

p+q _1 _1 -
£ y) = e xPT (yx)3Th 7Y y x>0
B S SH 2,8,9>0

Let ¢ = (aP+q)/(r(p)r(q)). Taking the Mellin transform and

integrating first with respect to x and then with respect to y yields

-1 - s1-1 ss-1
M(s8,,8,) = ¢cf [ xP7l (y-x)a-1 e=ay 1 y 2 dxdy
172
00
® sp=1l _ Y sy+p-2 _
=cf vy 2" gmay ;/ x 1 (y-x)371 ax] ay
0 0

Using the Mellin transform property (2.8), the transform above becomes

® 8p-l -ay Y o q-1
M(sl,sz) =cf vy e f x (y-x) dx]) dy
0 0 z=s +p-1

Using (15:16, # 2.20) to evaluate the inner integral, the transform

can now be written

P N e e A R N N DA R R R e e e
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cF(q)F(sl+p—1) f“ sl+sz+p+q-3

y e d
T(sp#pta-1) y

M(sl’sz) =

Realizing that the integral is just the gamma function and replacing
the value for ¢ yields

2-51-32
a [(p-14s, )T (p+q-2+s)+s,)

r(p)r(ptq-l+s,)

M(Sl’sz) =

fX Y(x,y) is returned by taking the inverse Mellin transform given by
b

(2.6).
2 F(p=1+s, ) (ptq-2+s,+s,) -s -5
1 1 172 1 2
£ R = A f ax a ds
r' -
(P"'Q"Z.l)
32 10,0,0,1,0 ax (ptq-1,1) ; =--=---
= —H (4.3)
I *'1,1,0,0,0,1 |ay| = -=—--
(P'lgl) » TTTTT
b
(ii) The bivariate beta distribution
F(p1+patpy) P11 pp-l p3-1

f = 1 -
009 = T Ty (py) =

x,y>0 , x+y<1 , py,p3,P3>0.

Let ¢ = T'(py+p,+p3)/T(p1)T(py)F(p3). Taking the Mellin transform and

integrating first with respect to y and then with respect to x ylields

o0
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1 1-x -1 -1 -1 -1 s,-1
P p Py S1 2
M(s,,89) = cf [ x Ly 2 (l=-y) X y
1°"2 090

dydx

3-1

L (sy#+py=1)-1 1% (sy+py-1)-1
A I ST L P

= of
0 0

Using (15:16 # 2.20) to evaluate the inner integral and substituting

the value of ¢, the transform can now be written

T(pytpa*p3IT(sy+py-1) 1 (sp+pp-1)-1 s+py+p3-2
J x (1-x) dx
F(p)T(p2)T(sg+pr+p3-1) o

M(Sl,sz) =

Using (15:16 # 2.20) once again to evaluate the integral yields

P(p1+Py*P3)T (s +p-1)T(sy+py-1)

M(S =
1°52) = T(p )T (py)T(5,+5,+P *P5*P3-2)

The H-function form is found by using the Mellin transform identity

for the H-function as defined by (3.18) or (3.20).

fx,y(x,y) = M7 [ M(sy,s5) |

P(p1+p2+p3) 1,0,1,0,0,0 x ; .ty
T(pT(PY) 179,1,0,1,1,0 |y (P +py+p4-2,1)

(P1-1,1) ; (pp-1,1)

: N 1 Oy -, W T W . \
EX R R s LK) *.'~ W ".' Ao.n ¢ *
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(iii) The quarter Cauchy distribution

O fy y(y) = 2+ +yHyD/2 x,¥>0 , ¢>0

s Letting r2 = x2+y2, x = cosf, y = gin9, and dxdy = rdrd®, the Mellin

{ transform can be written as

. o /2 s,~1 S,-1
M(sl,sz) = zs-f J (rcos9) 1 (rsinb) 2 (c2+1'2).3/2 rd8dr
" 00

/2 s,-1 s,-1

r cosB sind df]dr

A -2 (e2+r2)™3/2 4

‘Q: " 0 0
b

PaEYO)
RAAAAIYL

® sl+32-1

= £ B(s,/2,8,/2) IO r (c24r2)™3/2 4

where B(u,v) is the beta function and is given by

a

L

(g

B(u,v) = Lo

.I'.Jl-
R e

(R

O

Using (15:15 # 2.19) to evaluate the integral and Mellin transform

X

A

A

&
A A d

property (2.8), the transform becomes

PG AN

v
Y

‘l'l .l

sl+sz
cl(s,/2)T(8,/2) ¢ T(s,/2+8,/2)I'(3/2-8,/2-8,/2)

o
@

M(slnsz) =

20T (s, +8,) ¢3re3rz)

h
'n";'c hY
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1 s1¥s;y
"o T(s,/2)F(85/2)T(3/2-8,/2-8,/2)

Using the Mellin transform identity (3.18) for the H-function, the

H-function form for fx Y(x,y) can be found.
»

-1
fx'Y(x,y) = M2 [ M(SI:SZ) )

1,0,1,0,0,1

H]

1

= - H (‘5.5)
¢2:3/2 19 1,0,1,1,0

y (-1/2,1/2)

0= 0|

(0,1/2) ; (0,1/2) |

(iv) Kellogg-Barnes Type I distribution

g+1 2 2
o _ba 2 2,8 =a(x" +y)
fx’y(x’Y) ;F?E;T3 (x™ +y“) e ’ zvz;g

The Mellin tramsform for the Kellogg-Barnes I distribution was
computed in Example 2.3 and is given by

of (81/2)T (8,/2)T (B+s,/2+8,/2)

31/2+82/2
ur(8+1)r(sl/2+52/2)a

M(slosz) -

Taking the inverse and using the Mellin transform property (3.18) for

the H-function yields
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{:
n £ y = 3,71 M(s ]
) X,Y(x’y By ) 1282
( -~ ]
— (8,1/2)
"y 1,0,1,0,1,0 | V& x ;
::'{ = r—9+—1> IH (4.6)
wT(8 0,1,0,1,1,1 | /a y (0,1/2)
{
e (0,1/2) ; (0,1/2) |
‘4’: -
A *.
fi (v) Kellogg-Barnes Type II distribution
L2
. 2 -ax - By/x
e fy y(x,y) = Ba" e ’ x,y>0
A ’ a,B>0
.;ﬁ
{ The Mellin transform is given as
3
5 ® s,-1 = ;-1 _
2 M(sy,s,) = Bal J y (J/ x e OXBY/X 4x) gy
(B 0 0
)
.if Using (95:313 # 17) to evaluate the inner integral yields
.h.
"u
- 8 /2
’s * g,-1 1 1/2
. 2 2 " 2(By/a K 2 d
M(s,,8,) = Ba® /gy (By/a) s, 2(a8y) ] dy
‘
\:i
N 8,/2 ® sg,+s,/2-1
%* - 2802(8/a) 1 f y 2 ! K, | 2(aBy)l’2 | ay
0
[ )
o
s 8:/2 ® g,+28,~1
b = 4802(8/0) 1 J u 17772

K. [ 2aB u ] du
0 1

oL

where Kv 18 the modified Bessel function as defined by Erdelyi

4 -’f_f_ [y

b7
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(95:371). Using (95:331 # 26) to complete the integration yields

J-'-l'.‘ﬂ e L S s T T e s T AT, T AR A I A et & b At A A g ;
o«
WS
X
.
»"

E. J

L

U

s

v

i

K

»

-]

4

-841-8 =S
M(s),85) = Ba® @ = 2B 2 T(s +s,)l(sy)

Inverting and using the H-function definition (3.6) the H~function

form for fx Y(x,y) is obtained.
¥

F,x(xy) = M7 [ Mlspsy) ]

i (0,1)
, 0,0,1,0,1,0 | ax ;
= Ba lﬂ 4.7)
0,0,0,1,0,1 |aBy S
----- H (091) J

(vi) Kellogg-Barnes Type III distribution

(4

Ba c _-ax = Bxy
f (x,5) == . X e ’ x,y>0
X, Y%7 = Fiey 2,850 , c>2
The Mellin transform is given by
« +c-1 ® 8,-1
Ba® 81 -ax 2 -Bxy
M(8,,8,) = = . [ x e iy vy e dy] dx
172 T(c) 0 0
_'v csl-sz o sl-s“"'c-l
- - ‘ ~ax
\f T?Ej-‘ r(sz) Io b4 e dx
2
'82 '81

" frmy T8l (e -8,)(B/a) © @
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Inverting and using definition (3.12) or using the Mellin transform
property (3.20) for the H-function, the H-function form for fx y(x,¥)
?

is obtained.

fx’Y(x’Y) - MZ-I[ M(sl,sz) ]

—

8 0,0,0,1,1,0| ax| ====- i (1,1)

F(C) 2 0,0,1,0,0,1 g'y -----

4.4 Moments of the H-function Distribution:

Carter (3) showed that the moments of the univariate
H-function distribution can be found by taking the appropriate
derivatives of the characteristic function of the univariate
H-function distribution. To use this approach for the bivariate
H-function distribution, the double Fourier transform of the bivariate
H-function must first be shown to exist. To do this an extension to
Prasad's theorems (57) must be developed. Fortunately, while the
above is considered beyond the scope of this dissertation, there is a
simpler method for obtaining the moment. 3f the bivariate H-function
distribution.

Using the notation of section 1.3, the nl,nl ordered

noncentral moment for fx,Y(x'Y)’ 2» 18 defined by

a
nl,n

L '-‘_.-‘f{d‘d'-'-' -_‘n‘ L -"-('-""""'" ) o N '.I'h'l'.l-.l' . "-' et M '.".' R A N T il
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81

nl_n2
unl,n2 =E[xy ]

=17 x™ yn2 fo o(x,y)dxdy
X,Y
00
where E is the expected value operator. From the definition of the
Mellin transform, it is clear that

31-1 82"1

s).8,0 X, y00¥) b =Elx © ¥ ]
for distributions defined for x,y > O. The nl,n2 ordered moment for

fx Y(x,y) may then be obtained from the Mellin transform of the
»

probability density function. Specifically,

clnl,n2 - Ms ’32{ fX,Y(X’Y) }

1 s,=nl+l -
sz-n2+1
Ay
o~ )
N
}: Then from the Mellin transform property (3.18) of the bivariate
,‘u
%; H-function, the nl,n2 ordered moment for k,H[gyx,8,y] is given by
o
"R
y k
- unl’nz = T xl(n1+1)xz(n2+1)x3(n1+n2+2) (4.9)
gy &

where xl(“)’ xz(v), and x3(u+v) are defined by (3.7), (3.8), and (3.9)

,i: respectively.

Similarly, from the Mellin transform property (3.20) of the

bivariate H-function, the nl,n2 ordered moment for kzﬂ[glx,gzy] is

given by
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k
anl,nz = ;_ET:T;_Efil xl(n1+1)xz(-nZ-l)x3(n1-n2) (4.10)
1 2

where %)(u), x9(-v), and x3(u-v) are defined by (3.7), (3.4), and
(3.19) respectively.

Following the procedures outlined in section 1.3, (4.9) and

2

(4.10) above can be used to find ux’ u oxz, and °y « From

y? uxy’
these values, the covariance and correlation for X and Y may be found.
Example 4.1: From (4.3), McKay's bivariate gamma distribution can be

represented as a bivariate H-function distribution.

- T 1
(prq-2,1)
42 1,0,0,0,1,0 |ax | (p+q-1,1) ; -—-=--
YY) Ty 1,1,0,0,0,1 |ay | ===
i (p-1,1) ; =-==-- d

Using (4.9), U  may be found by setting nl = 1 and n2 = 0.

i
_ a’ T(p+1)I (ptg+l)

H = A

* O3 reareret) ;

b

4

= p/a :

Similarly, '

2

b e . -2l L(pIN(ptql)
Y0l 3 reyr(pta)

(p+q)/a

Py

|
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2 _ _ 2 2 . _ 2
Using the identities o %.0 " 91,0 and oy %,2 = 0,1 the

variances may be found.

2
2 _a” I(p+t2)T(ptq+2) _ (p/a)2

X 2% r(p)r(p+e+2)

- E(2+1) - 2?
az 82
= P/a2
Similarly,
s 2 - a% TRIT(pHa+2) _ (p+e)?
Y a4 et a’

- () (p+q2)2

a a

(p+q)/a’

Using (1.10), the covariance may be found by

cov(x,y) = &) 1 = a) g% )

] - a2 T(p+LIT(p+q+2) _ p(p+y)
b . -
2 a® T(p)(p+q+l) a?
[:::::
o
h'\_ 2
= p/a
o
id
T?: Finally, the correlation is equal to the covariance divided by the
-'j.
?i; standard deviations for x and y.
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A p(x,y) = COV(X.Y)/Oxoy

Sl -E .a_ i
a /p /oRq

I"" .
4 ‘:_'l H!

= /p/ipRq

+ o
e &

»~

The moments computed above agree with those given by Mardia

(47:89) for the bivariate gamma distribution. The moments for all six

. _ b ’ l' [}
P

. of the special cases of the H-function distribution given in section
A 4.3 were computed using (4.9) or (4.10) and agreed with those given by
Mardia or computed using the equations given in section 4.4.

o 4.5 Cumulative Distribution Functions:

4.5.1 Univariate Cumulative Digtribution

AN
I.‘ { {

A

The cumulative distribution function Hc(z) of a probability

e
5’ N

[/
5

density function H(z) is defined as

I S

<,
4N

g
¥ &

z
Hc(z) = [ H(u)du
0

S

o

S Using a well-known Mellin transform relation from Erdelyi
ol h95:307), Eldred (7:139) derived an expression for Hc(z). Cook

{5:103) improved on this expression and derived the form

o M+1,N (0,40,,0,),(1,1);
N [c, 378 ] (4.11)

W Hc(z) =1 - (k/e)H
S P+11Q+1 (0'1)’(¢j+°j’°.,)
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Cook then showed a second formulation for the cumulative
distribution and proved that the cumulative distribution function for
an H-function distribution is another H-function. Using the Laplace

transform, Cook derived the following:

M,N+1 (1.1).(93+0 »94);5
(k/c) H ez | 3
\ P+1,Q+1 (¢j+0j.°j).(0,l)

all -¢ <1, j=1,...,M

/9
35
H (z) =

M+1,N (ej+ej.ej).(1.1);
(k/c) H ez |
P+1,Q+1 (0)1)$(¢j+¢j'¢j)

if any -¢ 21, j=1,...,M

¢
3%
(4.12)
ﬂc(z) can also be computed using the Mellin transform property

for integrals given by Oberhettinger (15:12) and Sneddon (106:269).

z
Mgl S f(dau ) - <M E(2) )

Letting -1/s = I'(-8)/T(1-8) results in (4.12) case I and letting -1/s
= -T(8)/I'(s+1l) results in (4.12) case II.

Comparing (4.11) to (4.12) case II, it appears at first glance
that one of the two formulations must be in error. The Laplace
transform introduced by Carter (3) can result in one or more of the

poles associated with the (¢j,oj) overlapping with the poles

31 ™ - ' -¢- . .
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T associated with the new (0,1) term in the numerator. Under such

conditions, no contour exists to properly separate the poles. To

« Yamnl

»

correct this problem, Cook (5:81) eliminates the overlap by using an

e
o Nl )
LR

equivalent expression for the T(l-s) term introduced in the

.
.‘l

{ development of the Laplace transform of the H-function. The

Sﬁ replacement of this equivalent identity results in (4.12) case II. )
\ Assume -¢,/¢, > 1 for some j. Then (4.12) case II is valid ‘
. and (4.11) is not valid. Further, (4.11) is only invalid if the poles

:E associated with P(l-ej-ej-ejs) overlap with the poles associated with

;E the new term [(s). However, these poles will only overlap if

(ﬂ (9j+@j) > 1 for some j, j = 1,...,N. Now consider the poles of the

;ﬂ: density function. If this condition holds, then some of the poles of p
% r(OjMJs), (for -¢j/Oj), will occur at values of s > 1 and some of the

- poles of P(l-ej-ejs), (for Sj+0j > 1), will occur at values of s < 1. :
';j By definition (3.1) such an overlap of poles is not allowable. :
éi Therefore, the condition of ‘¢j/0j will never occur in H-function

; distributions and the cumulative distribution is given by (4.12) case '
' : I only. These results are summarized in the following theorem. )
%E THEOREM 4.1: If kH(cz) is an H-function probability density function

- -

: as defined by (4.1), then =0,/0, < 1, J = 1,... M.

ES From the discussion above, it would seem that it should also

:2 be true, for the same reasons, that (9j+ej) < 1l. While a check of all

the special cases listed by Cook, (6:85-87), support this idea, it is

o R 4y ‘.k.»- FE
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not possible to go from (4.11) to (4.12) and prove that this is true
in general.

It should also be pointed out that the improved Laplace
transform for the H-function as given by Cook (6:82) is not in error.

Specifically, it does not necessarily hold that -¢ <1,

¢
1'%
j=1,...,N, for the H-function in general. It is only true if the
H-function is a density function.

4.5.2 Bivariate Cumulative Distribution

The cumulative distribution function Hc[x.y] associated with
the probability density function, H[x,y] is defined by

xy
H.[x,y] =/ J H[u,v] dudv
00

Hc[x,y] can be obtained by direct integration or through the
use of the Mellin transform of H[x,y]. The latter method is most
often preferable as it avoids the necessity of evaluating H{x,y] in
order to derive Hc[x.y].

The use of the preceding procedures in evaluating Hc[x,y] is

made possible by noting from equation (2.14) that

{ 1-H_ [x,y] } = (slsz)-l { H(x,y) }

Msl,sz sl+1 8,+1
Inverting the equation above and subtracting one from both sides

yields

“ et ARTIAY SR S S A S SRS
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S

o H [x,y] = 1 - M,"}[ (8y8,)7 ! 4 { Hix,y]} ]

D o [x,y 2 152 S +1,8,+1 [x,y

A5

() .
,Hu: Consider first 18[{x,y]. Substituting the Mellin transform for 1Hlx,y]
".‘

'SE: given by (3.18) into the equation above and replacing 5, by sl+l and
ﬁ;& s, by sz+1 yields
I

o H =1 -t k +1 +2 ro 423, -82]
}“:I 1 c[x’Y] = My { g‘_g—sT xl(sl )xz(sz )x3(31 89 )81 g,

& 152%1°2

‘ot

53

‘: where %y (u), xz(v), and x3(u+v) are defined by (3.7), (3.8), and (3.9)
’i:j respectively. Recognizing that

‘.-.‘:_

(e 1 _TeyTGsy)
('~ $18, r(sl+1)P(sz+l)

’S: Substituting this identity into the inversion above yields

"

ro

L]

N lﬂc[x9Y] =1-

e F(sy)T(8,)

YN Kk -1 81/ 182 T8y 782

. - M e ————

l’-'

a’;;::

¢ Completing the inversion and using the bivariate H-function definition
*.'::'

e (3.6), the cumulative H~function form may be found.
-
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B x,y] =1 -
(e1+2E1’Ei)
N M1+1,N1,M2+1,N2,H3,N3 8,x (81+A1.A1).(1.1):(C1+C1.C1).(1.1)

Iy K\H
e Pl+1 .Q1+1.P2+1:QZ+1.P31Q3 8,Y (f1+2F1’F1)

P (0’1)’(bi+31’31);(0'1)'(di+Di’Di)_

A where K = k/g;g, (4.13)

5 Using property (3.16), m = n = 1, equation (4.13) can be written as

1B [xsy) =1 =

(e, ,E,)

; 1751

Q\ o K H“1+1,N1tM2+1’N2’M3-N3 g81% (ai'Ai)'(o'l) ; (ci,Ci).(O,l)
- 1
3 P +1,Q,+1,Pp+1,Qp+1,P3,03 |2,y (£4,Fy)

::.‘: (-lol)o(birni) ’ (-ltl)i(diini)

where K = kxy (4.14)

) Using the same procedure outlined above, a similar
® representation can be obtained for the cumulative distribution

function for 2H[x.y].
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(ei.Ei)

M +1,N) My, Ny+1,Mq, N, gyx [(ag+A7,A0),(1,1)35(1,1),(c =C;,Cy)

1
ZHc[x’y} =1~ j
i

K H
2
P,+1,Q,+1,P,+1,Q,+1,P3,Q; | 8oy (£,,F))

(0’1)0(b1+ni'31);(d1'01:Di)n(otl)

where K = k/glg2 (4.15)

Using property (3.17), m = n = 1, equation (4.15) can be written as

i (ey,E;) i
K HM1+10N1uM2’N2+19M3’N3 glx (ailAi)i(oil) H (zsl)’(civci)
2
P1+1,Ql+1,P2+1,Q2+1,P3,Q3 gzy (fi ’Fi)
(-1'1)’(b1’81) H (dioni)v(lol)
where K = kxy (4.16)

As indicated by (4.14) and (4.16), rHc[x,y] can be found at
the same time as rH[x,y] by using the calculations for the residues of
rH[x,y]. For lH[x,y], multiply each residue in the 8y plane by
l/(sz-l), and then add the pole sz-l (or increasing by 1 the order of
an existing pole at 32-1). For 2H[x.y], multiply each residue in the
s, plane by l/(-l-sz), and then add the pole 32--1 (or increasing by 1
the order of an existing pole at sz--l). For both 1H[x,y] and

2H[x.y]. multiply each residue in the s plane by 1/(31-1). and then

add the pole 31-1.
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Another formula for the cumulative distribution function of an

H-function probability density can be derived using the Mellin

transform.

THEOREM 4.2: The bivariate cumulative distribution function for a
bivariate H-function probability density function is a bivariate

H-function.

Extending the Mellin transform for integrals, (15:12;106:269),
to two variables and letting -1/s1 = I'(-s,)/T(1-8;) and -1l/s, =
P(‘sz)/r(l-sz) yields the bivariate Mellin transform property

Xy P(-sl)r(-sz)

Mo sl My F Y = ST (ms,) sy, 8,01

{£(x,y)} (4.17)

This property may also be obtained as a simple perturbation of
property (2.14).

Applying (4.17) and (3.18) to 18[x,y] yields

IHC [x,y] =

-1 kr(-sl)r(-sz) -81 -82
"2 8185F (1-8,)T(1-8,) X1 (8,41)xy(85+1)x5(8,+8,+2)g, 8y

Y IR R T e LA St .
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PR
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R
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3 92
(ei+2Ei’Ei)
U [ (1,1),(a +A A )5 (1,1),(e44C(,Cy)
1
P,+1,Q,+1,P,+1,Q,+1,P3,Q3 |,y (£,+2F,F})
(bi+31.Bi),(0.1);(d1+91a01).(0.1{
where K = k/g,g, (4.18)

1Hc[x,y] may also be obtained by reversing the order of

integration of the cumulative distribution function integral and the

bivariate H-function contour integral. Let

“Sa

-S
L 05 (=)egm) ' (gyy)  dsydsy

(27i)

H{x,y] = k

where S/ represents the bivariate H-function contour integrals as
defined by (3.6) and (~) represents the gamma products in the

bivariate H~function definition (3.6) which do not depend on the

£%,

:ﬁ variables x and y. Assuming convergence of the H-function, then
%
> XYy 1 -sl -82
(B lxoy]l =/ J Kk 2 17 (~)(ggu) (8yv) ds,ds,dudv
00 (2n1)
1 x -8y Y 82
=k > NGO i) (8,u) J (8,v) dvdu ] ds,ds,
(2ni) 0 0

(8,%) 1(szy)

e R s T el (4.19)
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replacing [(l-sl)(l-sz)]-1 by P(1-s1)r(1-s2)/r(2-sl)r(2-52) and using

(3.6), (4.19) may be expressed as

lﬂc[xoY] =
~ (ei,Ei) -
KIHMl,N1+1,M2,N2+1,M3,N3 g1x (0,1),(ai,Ai) ; (0,1),(c1,C1)
P1+1,Q1+1,P +1,Q2+1,P3,Q3 8,y (fi’Fi)
(bi,Bi),(-l,l) H (di,Di),(-l,l)
where K = kxy (4.20)

Using property (3.16), m = n = 1, (4.20) may be expressed as (4.18).
Using similar procedures, the cumulative distribution function

2llc[x,y] for ZH[x,y] may be found and is also given as a bivariate

H-function. Using property (4.17) and the Mellin transform for

2H[x,y], {(3.20), 2Hc[x,y] is given as

LB [x,y] =

"8 TS2
x1(51+1)x2(‘32-1)X3(sl-32)81 82 }

-1 kI (=s8,)l(-s,)
M
2 glgzr(l-sl)f(l-sz)

Replacing s, by -8, and completing the inversion by use of (3.12), the

cumulative distribution function for oHi[x,y] may be found and is given

by
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- oH. [x,¥] =

e (ef,Ey)

i KZHMI,N1+1,H2+1,N2,M3,N3 8% [(1,1),(a;+A A, )5(c;-C,C ), (1,1)
P +1,Q,+1,P,+1,Qy+1,P5,Q3(8,Y (£4,F))

(bi+Bi,Bi),(O,1);(0,1).(d1‘Di,D1{

s ;l ,‘r"‘n{ ) pls

D

where K = k/glg2 (4.21)

LA
MR

Using property (3.17), (4.21) may be expressed as

A

2Hc[x’y} =

AN
1
]

(ei,Ei)

£, 4,4, u_‘r‘v"ﬂ.
-4

(RN
Lo

( . HMI,N1+1,M2+1,N2,M3,N3 g1x | (0,1),(a;,A0) ;3 (€4,C4),(2,1)
N P +1,Q;+1,Py)+1,Q,+1,P4,Q5|8,y (f4,Fy)

:{.' (biaBi)'(-ltl) H (1’1)’(di’Di)J

) where K = kxy (4.22)

- Bivariate Gamma Cumulative Distribution: Applying (4.18) to the

’ a* "" . X "

.y

bivariate gamma probability density function given by (4.3),
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xy -l -
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& (p+q,1)
b .-

1,1,0,1,1,0 ax (1,1),(p4q,1) ; (1,1)

Van)
-3
~

PP 1% 21,101 Jlay| 0 —eee-

(p,1),(0,1) ; (0,1)

Celtels
PO I I ALY

v
'» .l . ‘l [

s ‘l
Ly

y>x>0 , a,p,q>0 (4.23)

-‘
o
W h

Y3
.

Bivariate Beta Cumulative Distribution: Applying (4.18) to the

(AT,

bivariate beta probability density function given by (4.4),

PR ]
o .

a i I'(pytpPy*pg) XY pp~l py-l a )P3'1 dud
3 = u -u=-v udv
R e XY ] = rg T (el (py) “0'0

=
2 i -
::' I‘(p1+pz+p3) 1:1‘191)090 X (111) H (1’1)

F(p)T(P) 17y 2.1,2,1,0 |y (Py+py+p3,1)

. . l"
e e

(P1,1),(0,1) ; (py,1),(0,1)]

o

1
4 4 a

R

x,y>0, x"'yslo p1oP2|P3>o (4.24)

@

NS

Quarter Cauchy Cumulative Distribution: Applying (4.18) to the

quarter cauchy probability density function given by (4.5),

A
@

LA

=3/2

«

dudv

»

LA

'@

xy
2 2 2
i [x,y] = ,,—cfofo (c2 +u? + Y
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1,1,1,1,0,1

o

(1,1 5 (1,1)

(1/2,1/2)

O e O |y

3 n 1,2,1,2,1,0

<

oYy (1/2,1/2),(0,1) ; (1/2,1/2),(0,1)

x,y>0, ¢>0 (4.25)

» pn

2
[} "‘l

b

flnfu

Kellogg-Barnes I Cumulative Distribution: Applying (4.18) to the

4
.“

Kellogg=~Barnes I probability density function given by (4.6),

B! v
«"a's%.%!

P

clB+1 Xy
1 [x9] = 7@ Tolo

AR
2

2 2
(u2 + vz)B e-a(u + v dudv

o WYy
.
]

Ly
Pl
[

o
!
|

(B+1,1/2)

(el
'.1‘.

E Y
1

1 1,1,1,1,1,0 |/a x (1,1) ; (1,1)

= H
"B+ 1 501,2,1,1 [Yay (1,1/2)

AR

K

(1/2,1/2),(0,1) ;5 (1/2,1/2),(0,1) |

DR

»
“

o

x,y>0, a,8>0 (4.26)

A b 8,0, 4, 0

[N
A A S

[
.4

Kellogg-Barnes II Cumulative Distribution: Applying (4.18) to the

Kellogg=-Barnes II probability density function given by (4.7),
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XYy
(Ho[x,y] = Ba® [ [ e7(au ¥ BV/W) 44,
oo
F —
(2,1)
HO,1,1,1,1,0 ax (1,1) ; (1,1)
1,1,1,2,0,1  |aBy ——
(0,1) ; (1,1),(0,1)
%x,y>0, a,8>0 (4.27)

Kellogg-Barnes III Cumulative Distribution: Applying (4.21) to the

Kellogg-Barnes III probability density function given by (4.8),

c xYJ -
1 [x,y] = g_?.c) fofo u¢ e~(ou + Buv) 4.4y

(c,1)
1 0,1,1,1,1,0 ax { (1,1) ; (0,1),(1,1)
B e ,H
Fle) 2 1,1,2,1,0,1 g'y s

(0,1) ; (0,1)

x,y>0, a,B8>0, ¢>2 (4.28)

4.6 Evaluation 2£ the Bivariate H-~function Constant

Carter (3), Eldred (7), and Springer (18) provide special
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:::-‘::7 cases and a definition of the univariate H-function distribution.
-0
. However, it was Cook (5) who gave a methodology for determining the
G
:..‘\-f:‘ normalization constant k in definition (4.1). A similar procedure can
.\ ~.
ﬂ-\\..
}}}‘ be applied to the bivariate H-~function distribution constant.
{‘ One approach to finding k is to investigate l,Hc[x,y] for large
A Y
NN x and y, since
o
;3_"} lim r“c {x,y] = lim k(H-function given by (4.18) or (4.21)) = 1.
Y X->® X~ ®
RN y-»r® y—®
\- .l
i
BAL]
A That is, if kr“c[’"” is a proposed H-function probability density,
NN
{ use (4.18) or (4.21) to find the associated H-function for the
F el
SR cumulative distribution function, which for large x and y will be 1/k.
Cs -.‘_
T
.‘:,:::_ While the above method is feasible, it yields a numerical
A
) approximation. An exact method may be found by equating the right
:.’1_ sides of (4.14) and (4.20), for 1H';[x,y], which immediately yields:
o
F.'..'.
-_'.-_"
-4
it
L
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e l/kxy =
L
S ~ -
E::. (ei’Ei)
2 LN MLy Ny g1x | (a4,8),(0,1) 5 (€4,€{).(0,1)

1

( P +1,Q,+1,Py+1,Q,+1,P5,Q3 |8,y (£4,F))
o (-1,1),(b;,By) 5 (-1,1),(d,Dy)
b 1
.:. I (e44E4)

-.“‘ M19N1+10M2:N2+1’M3!N3 81X (otl)l(ai’Ai) H (Oil)’(ci'ci)
] +

an 1
._:.:: P +1,Q,+1,Py+1,Q,+1,P3,Q3 | g,y (£4,F)

- (b;,B,),(-1,1) ; (d4,D,),(-1,1)
{ | p
7! 1 4 [ ( 1

- = —, (*) + ——— (~) |ds,ds (4.29)
& (271)2 (s,-1)(s,-1) (1-8,)(1-8,) 19%2
b
__., where // represents the appropriate contour integrals as defined in
A ~s -s

™, 1 2

_‘J.:‘: (3.6) and (~) = xl(sl)xz(sz)x3(sl+sz)(g1x) (gzy) also defined in
ox (3.6).
- Compare the residues of the two bivariate H-functions in
o~

Ly (4.29). Inverting with respect to 55, each RHP residue of the first
.}' bivariate H~function has a matching RHP residue of the second

? bivariate H-function that is exactly equal but opposite in sign,
n':: except at the residue at 8, = 1. Similarly, each LHP residue of che
W)
:‘ second has a matching residue of the first that is exactly equal but
0%

. opposite in sign, except at the residue at Sy = 1. Similar results
e YN

":; hold true for inverting with respect to 8. Therefore, whether (4.29)
0

)
Y8
W

~
-

B
z
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P is inverted by LHP(sl), LHP(sz); LHP(sl), RHP(sz); RHP(sl), LHP(sZ);

) or RHP(s;), RHP(s,), it reduces to only one term on the right side:

o5 1
.}‘ Ky (+LHP81LHP82 residue at s;=s,=1)
4

.
[

(-LHPSIRHPsz residue at 31-32-1)

5 4 e e,

O
]

(-RHPSILHP82 residue at 31-32-1)

r.."'

(+RHP81RHP82 residue at sl-sz-l)

:1:...

Y
,l 2
G AL AA A, Y sl

A

If the bivariate probability density function 1H[x,y] has no

2
s

{ ~ pole at s, = 1or s, = 1, then the bivariate cumulative distribution

S function lHc[x,y] has a pole of order 1 at 5, = 1 and 8y = 1 and

. (4.29) reduces to:

M N M

. 1 1 2

..iﬁ 1 ? r(bi+Bi) 2 r(l-ai-Ai) 2 r(di+Di)

o kxy 9 Q P

-y 1 1 2

. I° F(a,+A,) N T(l-b,-B,) N° T(c,+C,)

"7 144 178 1+¢4

° N1+1 M1+1 N2+1

208 N M N

N 1% r(l=e,~c,) i (e +2E,) n? r(1-£,-2F,)

' 1 1 1 1 (4.30)
2t x Q Pa Q 81X8qoY
ol 12 r(1-d,-p ) n’ T(f,+2F,) n3 I(l-e,=2E,)

i i~ i i i i

\-.‘- Mz"‘l N3+1 M3+1

\'\:

S

;:: Solving for k and noting the Mellin transform property (3.18),
P "

®.

GG

2o

..“l

X

Q:

o2y
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AV VALY RY
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10N

20N ko= (/M { j80x,y]1 })

Wik 1°52 8,=]

L s;-l

&%

. The above result is summarized in the following theorem.

L Theorem 4.3: 1If (H{x,y] is a bivariate H-function probability demnsity
(

3 o defined by (4.2) for r = 1, such that -bi/Bi <1l, i = 1,...,M1,

v.\-

::-:S -dj./Di < 1' i= 1,0.0,}‘2, (ai+Ai) < 1, i = l‘noo,Nl, (C1+ci) < 1,

AV i= 1,...,N2, (which implies that 1H[x,y] has no pole at s; = 1,

®
.::tj 8y = 1), then

-\.-.

-,

N k= ( 1/M { {H{x,¥] } )

AN,

N Spesy 1T 5,1
( s,=1

o

oL

B P Q P2

e 0" I'(a,+A;) 1 T(l=-b,-B,) I I(c.+C,)

i N+l b o M t Ay

e -2 1 1t 2

:'.‘-."-: . M Ny My

~j§ it r(b1+Bi) I r(l-ai-Ai) n r(di+Di)

v 1 1 1

®

= QZ P3 Q3

. i P(l-di-Di) - T(fy+2F;) X I'(l-e,-2E,)

".a:, X (l.¢31)
'I.'r

. 12 I(l-c,—C e 2 1° r(1-t. -2F

® . 17¢) 1 Tleg#2Bp B TOf- 1)
15

:r:::i

o 2:

;;* Example 4.2: Consider the probability density function given by

,L

o £ y(x,y) = ke %~ By/x | x,y>0

‘-'.'- pr

s

"y
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el
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’
A

HO,O,I,O,I,O ax H

=k 1% 0,0,1,0,1 |aBy ——

/, "'. h‘-". )
O A

s .'a
[
1
[
\
]
-
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o
-
—
e’
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from Theorem 4.3, k is given as

l."l.‘
AT

»
.m0

1 L2
fore - P

S
.

»
o

k = (a)(aB)

. 4 ""l‘yi}

which agrees with the definition of the Kellogg-Barnes II probability

ONONN,
A

density function.

{ ' The five special cases of the bivariate H-function probability
0 density functions given in section 4.3 all meet the conditions of

o Theorem 4.3 and their constants agree with (4.31)

N The normalizing constant for zﬂ[x,y] may be found in the same

:ﬁﬁ fashion by equating the right sides of (4.16) and (4.22),

Y

a3

5 o
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1/kxy =

HM1+1,N1,M2,N2+1,M3,N3 8%
2

+

HMI,N1+1,M2+1,N2,M3,N3 g(X
2

P +1,Q,+1,Py+1,0,+1,P4,Q5 | 8,

1 1
- R el
(2n1)? [(’1'1)(‘1”2) “

(o4 )
(ainAi)»(O’l) H (zll)t(ciOCi)
(£4,F))

(-1’1)'(bi’Bi) H (di’Di)'(l'lzJ

(e44E¢)
(091):(311A1) H (ciyci)o(zol)
(£,,F,)

(bitBl)l(-lvl) H (lol)o(dipbi)

1
(1’31)(1+32)

where /J/ represents the appropriate contour integrals as defined in

TR R T IR A AR AT LT AT RTINS -,1
. Sy e .
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PR S A

(~)] dsldsz (4.32)

(3.6) and (~) = xl(sl)xz(sz)x3(sl+sz)(glx) 1(gzy) 2 also defined in

(3.6).

-exactly equal but opposite in sign,

Compare the residues of the two H-functions in (4.32).

Inverting with respect to S5» each RHP residue of the second

except at the residue 8, = -1.

second that is exactly equal but opposite in sign, except at the

residue at s, = -l. Similar results hold true for inverting with

respect to s, except that extrs pole is at s, = 1.

AITAIGIAFLFDINIS 15 A TSIRIS XX RT3 P LA TRIS MRS VO AP 5 R R L YRR EHASTRLE TH LS COLSAS, X LGtk i

H-function has a matching RHP residue of the first H-function that is

Similarly, each LHP residue of the first has a matching residue of the
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If the probability density function oH[x,y] has no pole at

h 8, = 1 and S, = -1, then the cumulative distribution function ZHc[x,y]
{
ai- has a pole of order 1 at s, = 1 and 8, = -1 and (4.32) reduces to
¥
e
:J‘. Ml Nl MZ
pav 0" T'(b,+B,) 0" T(l-a,-A;) 1" I'(d,-D,)
l - 1 171 1 i 1 i~
L kxy Pl Ql PZ
-.‘:: 1" T(a;+A;) T T(1-b;~B;) 0~ T(cy-Cy)
'::_, N1+1 M1+1 N2+1
4
(3 Ny M3 Ny
k- I° T(l=c,+C,) 07 T(ey) N7 T(1~f,)
1508 X 1 1 1 1 (4.33)
o Q Ps Q3 81%82Y
1N i r(l_di+01) it F(fi) I r(l-ei)
{
*§ solving for k and noting the Mellin transform property (3.21) yields
::
o ko= (1M, { LH[x,y] } )
) 1°52 s =1
= "2
1 “-
.ff The above result is summarized in the following theorem.
A
'l
.; Theorem 4.4: 1If 2H[x,y] is a bivariate H-function probability density
'f: defined by (4.2) for r = 2, such that -bilni <l, i = 1,...,M1,
SO
:E:: dilDi > 1, i = 1,00..“2, (ai+A1) < 1, i= 1,-00,“1, (ci-ci) < 1,
».-' i= 1..--,N2, (which implies that 2l-l[x,y] has no pole at 8 = 1
¢é or s, = -1), then
R
5\
p
0.
4
J.
J.
"’:
n]
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k = ( 1/M { JH[x,¥] } )
108, 2077 s;=1
s2-1
Py Q Py
1" T(a,+A,) A T(1l-b,-B,) i° T(c,-C;)
1+ 1784 1=C4
N, +1 M, +1 N, +1
. 1 1 2
ak M, Ny My
N7 T(b,+B,) I T(l-ag=A,) I TI(d;=D;)
1 1 1
R Py Q3
1° T(1-d,+D,) I° T(£;) @ T(l-e))
My+1 Ny+l Myl
N (4.34)
Ny My Ny
? F(l-c +C,) 2 T(ey) ¥ r(1-£,)

Example 4.3: Consider the bivariate probability density function

given by
£, o(x,¥) = k(ax)S e"(®% + Bxy) X, ¥>0
X,Y
(c,1)
0,0,0,1,1,0 | ax | ==--- s (L, 1)
=k .H
27,0,1,0,0,1 %.y —
L ‘ -

Conditions of Theorem 4.4 are gsatisfied, and k is given by
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- (8 1 - B8
k= QO ey ™ o)

which agrees with constant for the definition of the Kellogg-Barnes II
distribution.
Another way to arrive at Theorems (4.3) and (4.4) is to
consider the zero-zero moment of a probability density function
k H(x,y], x,y > 0, and Msl’sz{ HIx,y] } has no pole at s, =1or
S, = 1, for r = 1, or at s, = 1l or 8y = -1, for r = 2:
o ®

E(x%°] = / / KkH[x,y] dxdy = 1
00

= Ms '32{ kH{x,y] }

1 31-O+1
52-0+1
=k M { Hix,y] }

S118, ’ s. =1
1_1

2

solving for k yields
k= (UM, CHIKY] )
1°82 s, =1
82-1

from which Theorems 4.3 and 4.4 immediately follow.
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CHAPTER 5

Transformations of H-function Variates

5.1 General Remarks

This chapter has two distinct parts. In the first part,
various combinations of products, quotients, and powers of dependent
H-function variates are examined. Theorems are presented to show that
the product or quotient of two dependent H-function variates is an
H~function variate. Powers of dependent H-function variates also
result in H-function variates. This result has significance since if
the joint density function of two dependent variates can be
represented as a bivariate H-function, then the probability density
function of a random variable of the form Z = XPY% is given by a
univariate H-function and may be inverted using the inversion routine
given by Cook (3).

The second part of the chapter examines various combinations
of H-function variates from two or more bivariate ll-function
probability density functions. Theorems are given for products and
quotients of variates from bivariate H-function distributions which
are pairwise independent. These results are also significant in that
by combining these results with the results from part one, a powerful
general theory for finding rational combinations of mixtures of

dependent and independent random variables now exists.
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5.2 Transformations of Dependent H-function Variates

5.2.1 Transformations of 1HIx,y] Variates

As is stated in the following theorem, one of the most

"

significant properties of the bivariate H-function distribution is

48,

Sl

that the probability distribution of products or quotients of its

)

.:J variates reduces to a univariate H-function. This is similar to

?Ef results derived by Carter (3) for independent H-function variates, but f
i this theorem shows the result holds for dependent H-function variates

;: as well. It is well known that such a property is not common among

ig the classical distributions.

L atale

Theorem 5.1: If X and Y are H-function variates with joint

probability density function fx Y(x,y) where
»

A

: kl“[glx:32Y] » X,y > 0
P~ fx Y(x’Y) -
’ 0 , otherwise
;i then the probability density function of the random variable
s
® z= xPyd
h p,q rational, is given by
® -1 L N "
Ay Kglp gzq H glpgzqz I , 220 :
- P Q nz *
f,(z) = (5.1)
Xe 0 otherwise
@
o
o) :
-“ :
: :
[
>
'O
’:\.' P R RN UL, P , AL Py - - _'. - OO

e - ‘l.‘ - o
HEAGTA N LA G N b 'Q';,.ﬁ' ‘&A_h -_.-.\)‘rJ-."'.‘r.\J _.'L. :. val
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A where for
- Case 1 p>0 , q>0
e
e K=k, M=IM_, N=IN,, P=IP,, Q=IQ,, i=1,2,3 ,
s i i i i
sTa
",

Ny = (ag+A;~A;p,A;p), i=1...N}, (c;+C;-C;q,Ciq), i=l...N,,

(£,+2F, <F, (p+q),F; (p+q)), i=l...N;,

_23 (ag+A;-A;p,A;p), 1=N;+1...Py, (c +C;-C;q,C;q), i=Ny+l...P,,
'iz (£,+2F, -F, (p+q),F,(p+q)), i=Nqa+l...Py

‘ig Ny = (b;+B,-B,p,B,p), i=l...M;, (d;+D;-D;q,D;q), i=l...M,,

a?ﬁz (e +2E, -E, (p+q),E;(p+q)), i=l...M,,

zfzj (by+B, -B;p,B;p), 1=M;+1...Q;, (d;+D;-D;q,D;q), i=M,+l...Q,,
;"j' (e +2E,~E, (p+q),E; (p+q)), i=My+l...Q4

:-._;:: Case II p>0 , q<0 , ,p, >‘q|

iEj K=k, M=M,+N,#My, N=N +M,+Nq, P=P +Q,+P;, Q=Q+P,+Q5,

f;l Ny = (ag*A -A;p,Ap), 1=1...N, (1-d;-D,+D,q,-D;q), i=1...M,

;;? (f +2F, -F, (p+q),F  (pHq)), i=1...N,

i (a,+A,-A;p,A;p), 1N +1...P, (1-d,-D;+D,q,-D,q), i=My+l...Q,
'gﬁ (fi+2F1-Fi(p+q),Fi(p+q)), i=Nj+l...Pq

‘iéi Ny = (by+B,~B,p,B,p), i=l...M;, (1-c,;~C,+C,q,-C;q), i=1,...Ny,

ol (eg+2E;-E; (p+a),E (p+a)), 1=1...M5,

.zé (by+B,~B;p,B;p), i=M;+1...Q;, (1-c,;=C,+C;q,=C;q), 1=Ny+1,...P,,
SN (e +2E,-E, (p+q),E (p+q)), i=M3+l...Q4,

Case II1 p>0 , q<0 , |p[<[q]

.

Kok, M=M 4Ny +Nq, NeNj#M,H3, PeP4Q;4Q3, Q=Q)+P,+P4,

— il Pl
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n, = (a;*A;-A;p,A;p), 1=1...N;, (1-d;-D,+D,q,-Dyq), i=1...M,
- (1-e, =2E +E, (p+q),~E, (p+q)), i=1...M,

;:;3 (a,+A;-A;p,A;p), i=N +l...P;, (1-d;-D,+D,q,-D;q), 1=My+1l...Q,
\ (1-e, -2E,+E; (p+q),~E  (p+q)), i=Mj+1...Q4
n, = (b;+B,-B,p,B,p), i=l...M;, (l—¢,;=C,+C,q,-C;q), i=1...Ny,
= (1-f, =2F +F, (p+q),=F; (p¥a)), i=1...N,

AN

Ay

‘.x (1-£, =2F +F, (p+q),-F, (p+q)), 1=Ny+l...Py

NS Case IV p>0 , q<0 , |p|=a|

T '
oy

N M N

7 3 3
) 1° T(e,+2E,) 0 T(1-f,-2F,)
{ 1 1

- K=k

3 Q
N n° T(f,+2F,) N~ TI(l-e,=-2E,)

" 174%1 175

e N.+1 Mq+1l

3 3

A

\.;..

M=M, 4#N,, NeN,+M,, P=P,+Q,, Q=Q;+P,,

b
S
:’j—i:; N, = (aj+A;-A;p,A;p), i=1...N;, (1-d;-D,;4D;q,-D;q), i=l...M,,
P

3:15:: (a;+A;-A;p,A;p), 1=N)+1...P;, (1-d;-D;+D;q,~D;q), i=My+l...Q,,
S nz - (b1+Bi-Bip,Bip)’ i'loooMl, (l-ci-ci"'ciq,-ciq). 1.1010N2,
)\ (b1+Bi-Bip,Bip), 1=M;+1...Q), (1= ;-C;+C;q,=C;q), i=Ny+l...P,y,
- Case V. p<0 , q<0
o

Soal

" K=k, M=IN , N=IM , P=LQ,, Q=IP;, i=1,2,3 ,

o

o

-, .

-F.‘-

b..'n

.:::..

0.
F2

‘a
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n = (l-bi-Bi+Bip,-Bip), i=l...M,, (1-di-Di+Diq,-Diq). i=1...M,,
(1-e1-2Ei+Ei(p+q),-Ei(p+q)), i=1...Mq
(l-bi-Bi+Bip,-Bip), i-M1+1...Ql,
(l-di-Di+Diq,-Diq), i=My+1...Q,,
(1-e1-2ﬁi+Ei(p+q),-Ei(p+q)), i=Mqy+1...Qq

N, = (l=a;~A;+A;p,~A;p), i=l...N;, (l=c;=C,+C,q,-C;q), i=l...Ny,
(1-f1—2F1+Fi(p+q),-Fi(p+q)), i=1...Nq
(1-31‘A1+A1p,-Aip), i=N,+l...P,,
(1'°1‘°1+C1q"C1Q)’ i-N2+1...P2,

(1-f, =2F +F, (p+q),-F; (p+q)), 1=Nqy+l...P,

Proof for Theorem 5.1 From Theorem 2.4

-1
fz(z) = M1 [ Mps-p+1,qs-q+1{ fX,Y(x’Y) 1

-1
Mp U Mogpa1,qe—q+1{ K1H[B1%:8571 1 ]

and from Equation (3.19)

£,(2) = M, [ksl‘“a{"xl(u)x2<v)x3<u+v> ]
u=ps-p+l
v=qs—q+1
-l q-1 1 h+ie .
- - - - P et -} . :
f2(2) = k81" "8y o7y fh_i. X (u)xy (V)x3(utv)) (8,°8,32)7° ds (5.2) i
u=ps-p+1 4
v=qs-q+1

from the univariate H-function probability density function

r .{'.\‘.' e ,\ . " l.
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definition, (4.1), and the univariate H-function definition, (3.1),

»
a “»
st
a
.
)

cases I, II, III, IV, and V immediately follow.

-\: Special Cases

:? Two special cases of this theorem that are of particular

e

b interest are a simple product and quotient of two dependent variables.
. ; The distribution of Z = XY: From Theorem 5.1, p = q = 1, (5.1)
‘f . reduces to

i

.

:.::‘. - M N nl

NN kH 81842 l , 250

.- 152

?.n'.; P Q nz

_:.". f (z) = (5.3)
AT Z |
( 0 otherwise
e \
P,

o |
_“ﬂ where M=M, , NeIN,, P=IP,, Q=IQ;, i=1,2,3 ,

-~
‘.' nl = (ai.Ai), i.loooNl. (ci,Ci), i-loooNz,

:.::' (fi,ZFi), 1.1- . lN3, (ai ’Ai)’ 1-N1+10 . .Pl’

:i; (ci,Ci), i=Ny+1...P,, (fi,ZFi), i=Ng+l..oPq

ot

so Ny = (b;,By), 1=1...My, (d4,D;), i=l...My,

®

:_:i: (ei,in)’ 1.10 ] .M3,(b1,31), 1-M1+10 . .Ql,

Cat]
e

:f::: (di’Di ) ’ 1-M2+1n . 0Q2’ (ei ’2Ei ) ’ 1-M3+10 . 0Q3

[ ]
AN Equation (5.3) above may also be found by applying Equation
e
YING
RN (2.23) to the Mellin transform, (3.19), of the bivariate H-function
o

L.
:;; definition. Recombining like terms and inverting by (3.6), Equation
.. (5.3) may be obtained directly.
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:: For the special case where M3-N3-P3-Q3-0, the bivariate
"‘ H-function probability density function reduces to a product of two
f'.: independent univar:ate H-function probability density functions and
:": (5.3) reduces to the form given by Carter (3:52) for the distribution
{ a of the product of two independent H-function variates.
,j-' The distribution of Z = X/Y: From Theorem 5.1, p =1, q = -1, (5.1)
. - T = =
)':_ reduces to
!
::E M1+N2,N1+Mz g1 "1
.':, E_EH g z , 220
.‘-: g P 4Q,,Qy+P 2 n
o fz(z) = 2 17721772 2 (5.4)
{ o 0 otherwise
o,
~'I
7 where
. M N
o 3 T 3
) n (e1+2Ei) n I‘(l-fi-ZFi)
. 1 1
- K=k
v P3 Q3
o I r(fi+2Fi) it I‘(l-ei-ZEi)
o N3+1 H3+1
‘ n, = A i=l...N 1-d,-2D,,D i=1l...M
. 1 (aiv 1)) AL T ( i i i)’ eoellyy
:\:..' (ai,Ai), i.N1+1000P1, (l-di-ZDi,Di), i‘Mz"'luoon.
_ ny = (by,B;), i=1...M;, (1-¢;-2C;,C;), i=1...N,,
._ (b,B,), 1=M+1...Q;, (1=c;-2C,,C;), i=Ny+l...P,, |
o i
-j::: Equation (5.4) may also be found by applying Equation (2.24) i
|2 to the Mellin transform, (3.19), of the bivariate H-function 1
)
A‘- definition. Recombining like terms and inverting by (3.6), Equation
et
b :’0
~, 1
, ] i
<, 1
o, I
!
- !
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(5.4) may be obtained directly.

For the case M3-N3-P3-Q3-0, (5.4) reduces to the univariate
H-function probability density function which is the result of the
ratio of two independent H-function variates. For M3=N,=P4=Q4=0,
(5.4) agrees with the form given by Carter, (3:62).

Example 5.1: Consider the Kellogg-Barnes II distribution given by

fx,y(x:¥) = Ba? exp(-ox - By/x) , X,y>0
' a,B>0
B a
(0,1)
2 0’0’190’1’0 ax H
= Ba 1H
0D0’0’1’0,1 aBy ——-— - -
A I LIS DI

The distribution of the random variable Z=X/Y may be found with

Theorem 5.1, p =1, q = -1, or from (5.4) directly, and is given by

r

2 01 (-1,1)
Ba 1 ’
f (z) = r(2)n =z
z 22 10'_8 | ]

1 h+i» 1 -5
551 fh-io P(2-s)(§ z) ° ds (5.5)

W]

Using Cook's convergence theorem for the H-function, equation
(5.5) may be evaluated using the sum of residues in the right half

plane. Poles of the integrand from I'(2-s) occur at 8=2,3,4,...
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Evaluating the residues at these points and summing yields

2 = i i
L residues = EE g D (B{f)
z® 1=0 :

Recognizing this as the power series for the exponential, the

distribution of fz(z) is then given by

£,(2) = % I residues

= 8272 ¢7B/2

which agrees with the results obtained using the Mellin convolution
integral in Example 1.5.

Example 5.2: Suppose the distribution for the random variable Z=Y/X
is desired for X and Y distributed by the Kellogg-Barnes II
distribution given above. Clearly, Theorem 5.1 won't hold in this
case since it does not allow for cases where p<0 and q>0. However, if
the Mellin transform is used to map x into Sy and y into s, and an
appropriate H-function identity found, then Theorem 5.1, case iv,
holds. The H-function representation for the Kellogg-Barnes II

distribution with such a mapping is given by

(0,1)
2 1,0,0,0,1,0 |aBy H
’ 0,1,0,0,0,1 ax —————
s (0’1) ; ..... -
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Applying Theorem 5.1, case iv, the distribution for the random

L.; variable Z=Y/X is

ST\ I8 —
t!_. £,(2) ..51 r(2) H [Bz [ ]
Y o? 01 (0,1)
b’
I\-
;::
FS =g i;i fh-io F(s)(Bz) ds (5-6)

The distribution fz(z) can be found by evaluating and summing
the residues of (5.6) in the left half plane. The integrand of (5.6)
has poles at s=0,-1,-2,... Evaluating and summing these residues

yields

* i
I residues = g ("1)7(82)
1=0 it

Realizing that this 1s the power series for an exponential, the

distribution fz(z) may be given as

fz(z) = 8 I residues

- Be-Bz

The distribution fz(z) may also be determined directly from the

H-function form of Equation (5.6). Using the special cases given by

v

Ny TS
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Carter (3), the exponential distribution is given directly by (5.6).
The solution is verified by use of the Mellin convolution integral in
Example 1.5.

Example 5.3: Consider the probability density function given by

Aa1+8/2

fx'Y(xoY) - E"ﬁ'

B8 oma(x® + yd)
r¢él
2

Q x
W™ <
v Vv
oo

Viewing the density function above it should be realized that
the function can be expressed in the form fx(x)-fY(y). Restated, X
and Y are independent. While theorems given by Carter (3) may be used
to find the distribution of Z = XY, it is illustrative to treat the
density function above as a joint density and use Theorem 5.1 to find
the density function for the random variable Z = XY.

Applying (2.5), followed by (3.6), to the joint probability

density function above, the H-function representation may be found and

is given by
o 1,0,1,0,0,0 | Ya x H
fe y(x,y) = H (5.7)
X,Y Gr(%_r) 1%,1,0,1,0,0 [ /5 y S—
(8/2,1/2) ; (0,1/2) |

From Theorem 5.1, case 1, p = q = 1, the distribution of Z = XY {s

given by

-‘J'_‘ :‘*\-."‘.-:'-':'.'\_-.'.b“ -.. .':‘ N '..f.“'\' e A"'\..‘ .
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-8, -.'q.

l./

Qa

2,0
f,(z) = ——— H [az J
z m<32£) 0,2 I (8/2,1/2) ; (0,1/2)

* Vamnl

l'_ l.- . .

, hHe _
a Lo r(Ei_or(go(az) 8 ds (5.8)
/T 211 h-i=

OO
AP

)
.‘.

for 8 = 1. From Legéndre's duplication formula, (8:5 #15)

e

NN

x1/2 r(gor(égl) = 2T (s)2”S

@
.
.

.k.\ .l“

Rl D

Equation (5.8) can be written as

{ 1 h+ie _
A f,(2) = 2a o fh-iw I(s)(2az)"% ds

1,0 ————
) = 2a H 2az|
o 0,1 (0,1)
X which from Carter, (3:45), is just the exponential distribution with

.
if parameter ¢ = 1/2a. Specifically,

v e
»
PL

fz(z) = 2<:ne.2c‘z

..'..'
LA

-

The solution may be verified using the convolution integral,

",:' ‘..n"/‘

Theorem 1.5, For 8 = 1,

s
LN

e

4372 = catx? + (200

= 0

LY

fz(z) =

AR

PELLOS
by ‘v -‘o

.d‘ sl. o
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~
(X 2 2
?:; A C (az/u)®) du
T 0
‘.'.'
‘.‘-
L4 -
> = 20e72%2
( " which agrees with the solution above using a bivariate H-function
5:$ probability density function and Theorem 5.1.
-\-
\-.
>, 5.2.2 Transformations of ,H[x,y] Variates
A — 2
-
.: Theorem 5.1 shows that the probability density function of

1

‘.
T

products or quotients of 1H[x,y] variates is a univariate H-function.

RN B
. I
o ?,

4 4 v e

The following theorem shows this property is shared by 2H[x,y]

)
.
s

variates.

~

Theorem 5.2: If X and Y are H-function variates with joint

probability density function fx y(x,y) where
?

kz“[glxogzy} » X,y > 0
fx Y(X’Y) =
’

0 , otherwise

then the probability density function of the random variable

b . I"'.(..,#..{}‘\. 'f-.."l l.';l .I".l’

4t A'.l‘
.

z= XPyd

A AT
.

P,q rational, is given by

Lot
e

1 g MW n,

b Kg,P™" 8,97 H g.Pg 9z l y 220

NN 1 2 1 °2

e P Q nz .

o fz(2) = z (5.9)
0
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0 where for

\.

. Case 1 p>0 , q>0, P>q

Kek, M=M 4N M, N=N)#iy#Nq, P=P)+Q,+P3, Q=Q)+P5+Q3

: f\l = (81+A1-Aip,A1p), i.luloNl, (1-d1+Di-Diq.Diq)’ 1'1000".2, .
‘ (fi-F1p+Fiq,Fip-F1q), i-l...N3,

:2 (a;+A;=A;p,A;p), 1=N)+l...P), (1-d;+D;-D;q,Dq), i=My+1...Qy, i
< \
:\ (f,-F;p+F,q,F;p-Fyq), 1=N3+l...Py ;
B : ]
° n, = (b;+B;-B;p,B;p), i=l...M;, (1=e4+C,-€;q,C;q), 1=1...Ny,

o
s:: (ei-Eip+Eiq,Eip-Eiq). 1-1'°‘M3’
::: (bi+Bi-Bip,Bip)’ 1.M1+1001Q1, (I-Ci‘l'Ci‘Ciq,Ciq), 1-N2+1oooP2,
' (e -E,p+E,q,E;p-E;q), i=M3+1...Qq

- Case 11 p>0, ¢>0, p<q

&

{-

.. Kok, M=M +N,+Nq, N=N;+M,+M5, P=P;4+Q,+Q5, Q=Q, +Py+P1

-, \
'\ n o (31+A1—A1P’Aip)' i-l...Nl, (l-di+Di-Diq,Diq), 181...M2,

::: (l-ei+Eip-E1q’.Eip+Eiq). 1-1000M3, »
>,

;: (a +A;-A;p,A;p), 1=N)+1...P;, (1-d;+D;-D;q,D4q), i=My+1...Qy, i
,' (1-e,+E,p-E;q,-E;p+E;q), i=Mj+l...Q,
N, = (b;+B;=B,;p,B;p), i=l...M;, (1-¢;+C;-C;q,C4q), i=l...Ny, !
(1-f +F,p-F,q, -F p+F;q), i=1...N,, y
- (b, +B,~B,p,B;p), 1=M +1...Qp, (1-c4+C;-C;q,C;q), i=Ny+l...Py,
;:C; (1-f +F, p-F q,~F;p+F;q), 1=Ny+l...P,

<,
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Case III p>0, q>0, p=q

M N
3 F(e,) 1 r(1-£,)
1 1

P Q

i3 r(f,) 12 I(1-e,)
N+l Myl

K=k

M=M,+N,, N=N,+M,, P=P;+Qy, Q=Q;+P,
n, = (ai+Ai-Aip,A1p), i=1...N,, (1-d1+Di-Diq,Diq), i=l...M,,
(a +A;-A;p,A;P), 1=N,+1..0Py, (1-d,;+D,-D,q,D;q), 1=M,+1...Q,
n, = (b;+B,-B,p,B;p), 1=1...M;, (1=c;+C;-C;q,C;q), i=l...Ny,
(by+B, -B,;p,B;p), i=M;+1...Qy, (1-;+C,-C,q,C;q), 1=Ny+l...P,
Case IV p>0, q<0

K=k, M=IM , N=IN, P=IP;, Q=IQ;, 1=1,2,3

1°
n, = (ai+Ai-Aip’Aip)’ 1-1...N1, (ci-Ci+Ciq,-Ciq). i-l...Nz,
(f,~F;p+F;q,Fyp-F(q), i=1...N4,
(ai+Ai-Aip,Aip), i-N1+1...P1, (ci-Ci+C1q,-Ciq), i-N2+1...P2.
(£,~F, p+F;q,F p=F;q), i=Nj+l...P,
n, = (b;+B -B,p,B;p), i=l...M;, (d;-D;+D;q,-Dq), i=l...My,
(e;~E,p+E;q,Ep-E;q), i=l...M,,
(b1+Bi'Bip’Bip)’ 1=M,+1...Q;, (di-Di+Diq'-Diq)' 1=My+1l...Qy,

(ei-Bip+Eiq » Eip.Eiq ) > i.M3+1 .e 0Q3

Proof for Theorem 5.2 From Theorem 2.4
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-1
fz(z) =M,

[ Mps-p+1,qs-q+1{ fX,Y(X’Y) .

s
bt UL

-1

= Mps-p+1,qs—q+1{ koH(gx,8,y] b

A
G rri Yy

1 4y

and from Equation (3.21)

.’J- f- J- Il “l .-l I‘

- i
.

u=ps-p+1

g £,(z) = Ml-l tkgl-ugz-vxl(u)xz(-v)x3(u-v) }
v=qs-q+l

~ @

M

s - Ml-l [kgl'“gz"xl(u)xz(v)x3(w)

WA _'n‘ R)

r

u=ps-p+1 ]
v=-qs+q-1
e w=(p-q)s-pHq

i

. ".

—_~

h+ie
1 Ih—iw X, (u)x,y(v)xg(wW) (glpgzqz)-s ds  (5.10)

o

- £ A
'.‘t‘.".gl .“ '
- 8 8 &
(o)
N
~~
N
o
[}
L
o
—
-
—
[
~N
<L
[}
-

u=ps-~p+1
v==qs+q-1
w=(p=q)s-pHq

X
l.l.'l

:\-l‘.

o, A}

from the univariate H-function probability density function

T ¢ ¥ @
O
et

) definition, (4.1), and the univariate H-function definition, (3.1),

N
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cases I, II, III, and IV immediately follow.
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Special Cases
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A simple product and quotient of 2H[x,y] variates are

® s
[
.

(‘ l'

presented as special cases of Theorem 5.2.
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The distribution of Z = XY: From Theorem 5.2, case III, p=q =1,
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M. 4N, , N, +M n
1N Ny HY 1
S- K H 88,2 | ] , 2>0
P1+Q;,Q 4P, Ny
fz(z) = (5.11)
0 otherwise
where
M N
1% ey 1° r(1-£,)
k=i L 1
Py Q3
17 T(E,) 10 T(l-ey)
Ny+l M+l

\'\1 = (ai’Ai)’ 1-100-N1, (l-di.Di)’ i‘loooMz,
(ai,Ai), i=N1+10-oP1, (l-di’Di)’ i‘M2+1-ooQ2
Ny = (b;,B;), i=l...My, (1—,,C,), i=l...N,,

(bi,Bi)’ i-M1+1¢o-Q1, (l.ci'ci), i’NZ"'l-oon

Equation (5.11) can also be derived directly by applying

(3.21) and (2.23) to the bivariate H-function distribution definition,
(4.2) and the H-function definition (3.12).

The distribution of Z = X/Y: From Theorem 5.2, case IV, p = 1,

q = -1, (5.9) reduces to

é MN|g n
\ K H [-l z | 1 ] , 2>0
g9 P Q 82 n,
fz(z) = (5.12)
0 otherwise

S T T P 1 R A T N T e Tt N e e e e et e T e e b
Ny e g T T T e T e T T f\‘f\‘.\'j
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: : vhere K=k, M=IM , N=IN,, P=fP;, Q=IQ;, iv1,2,3

‘ Ny = (a5,A), 1=1...Nj, (e =2C(,C,), i=l...N,,

t" (£,-2F;,2F)), i=l...N;, (a;,A;), i=N+l.. P},

\ (¢ -2C,,C.), isNy+l...Py, (£;-2F;,2F;), i=Ny+l...Pq

¢

nz = (bi’Bi)’ 1-1000M1, (di‘2Di,Di), i-loooMz'
(ei-ZEi,ZEi), i’looobl3, (bi'Bi)’ i=M1+lo.oQ1,

(di-ZDi,Di), i’Mz"'lo--Qz, (ei-ZEi,ZEi), i’M3+1¢o-Q3

Equation (5.12) can also be derived directly by applying

(3.21) and (2.24) to the bivariate H-function probability density

definition (4.2) and to the H-function definition (3.12).

A
. f‘_t

Example 5.4 Consider the Kellogg-Barnes III distribution given by

by
EAAS

N
{]

Bac c
f = = X exp(~-ax - 8 x,y>0

2,1

.

. .
RANAIS

—

(c,1)

0,0,0,1,1,0| oax | ====- ; (1,1)

YA

2
w0

" rey 28

@

0,0,1,0,0,1 %y ——-

o5

L AR )

a AJ.:';'A ,h
-we
L

Ay

Applying Theorem 5.2, case III, p=q=1, or applying (5.11) directly,

the distribution for the random variable Z=XY is

.:. _.j..' t...a:. }..Il'v:.-'
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.8 a8
PORE ~RICEL I [a‘ z| o ]
10 [ —
=8 H Bz | (5.13)
01 (0,1)

The distribution of f,(z) can be found directly from (5.13) by
realizing that (5.13) is the H-function identity for the exponential

distribution with parameter 1/B as given by Carter (3). Then
fz(z) - Be-az

which agrees with the solution obtained in Example 1.4 using the

convolution integral.

5.3 Transformations for Two or More Bivariate Distributions

In the last section theorems were presented deriving the

distribution for a random variable resulting from some combination of

1; dependent H-function variates sharing a bivariate H-function

)\.'

CAL;

o probability density function. This section is concerned with

CN

LA

o procedures for finding the bivariate probability density functions of
;. random variables which are the products or ratios of other bivariate
S%j random variables.

i

=

)

T

o

a%s

a0

L
i
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SN 5.3.1 Tranformations for ,H{x,y] Variates

N 1

o 5.3.1.1 The Distribution of Products

- Theorem 5.3: If Xl,Yl; X5, Yy eee; X ,Y, are n pairwise independent
~;::? random variables with bivariate probability density functions

P

';:.f fl(xl,yl), £9(%9,Y9)s ooe» fn(xn,yn) respectively, where

"o

S k

:- j lnlgljxj’gz_‘]yj] ’ xj’yj >0

£5¢ f =

.\ j(xj'y:‘)

8 0 , otherwise

o

:.:::: for j=1,...,n, then the bivariate probability density function of the

::::: random variables

({

n n

- Z= I X s W= 1 Y

- SRR

W, is given by

e

- £z, uzw) =

..'b

& r- ]

° "

Y

n IM, ,,IN, ,,IM, ., IN, ,IM, LN (n ;
142“M1 40 ’ 2&llg sy 81 )z nz HI|

z; (ﬂkj) ¥ J 7722 7733 ] 3 z,w>0

$ ZPU,ZQU,Zsz,inj.zP:,j,zQ:;j (HQZj)w Ng

'

o Ne 3 N

23 L 576

+,

W

o8 0 otherwise (5.14)

o

N

1 ®.
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’
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N

_;': where the I's and lI's are indexed over j and go from 1 to n and

P

o

:-: nl = (eij’Eij)’ 1'10-.}13:]. j.lo'on, (eij,Eij), i-M3j+1-00Q3j, j-l...n
'-.' nz = (aij,Aij)’ i'lo--Nlj’ j’locon’ (aij’Aij)’ i'N1j+1-coP1j, j’lo-on
"‘.:l = = i= = =

g.; "\3 (cij,cij)' i lco.NZj, J 1--0“, (cij,cij). i N2j+lo--P2j, j 1...!\
2

‘-. n = f F i=l...N =l.,.n £ F, . i=N,.+leesP, . =l...n
f. 4 ( ij! ij)) 3j’ j 1] ( ij’ iJ)’ 3j 339 j

{ Mg = (by5uBy5), i=lealyy, J=leven, (byguByg), i=Myg+leenQpyy J=1ovom
:: ‘16 = (dij,nij), i-loo-sz, j-lancn, (dij,Dij), i.M2j+1-ooQ2j, j'lo-on
N

3

.‘ Proof of Theorem 5.3: From Theorem 2.5,

< 2=

Q:,

R 4.’ |
:3 fz’w(z,w) = M, [(n M s { fj(xj’yj) }] z,w>0

X j=1 1*72

(

:::' and from the Mellin transform of the bivariate H-function, (3.19), the
I-

:::', bivariate density of Z and W is then given by

:-‘ 1. " -8) Sy

2 fruz) =M L1 Ukyery 8y y(exgylepinaylerten) } ]

3

o

o

>,

-c:‘ n -1 n “Sl ‘32 h
= "Lk My L Exgtengyepdxyytertegleyy gy T Y
) .

= where xlj(sl), xzj(sz), and x3j(sl+32) are defined by (3.7), (3.8),
'::: and (3.9) respectively. Recombining like product terms and using

7 (3.6), equation (S5.14) may be written directly.

| 4

v For the case where Mij'"ij-Pij'Qij-o’ i=2,3, (or for i=1,3),
:;I

o

!

<.:

\

I

\
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j=1,+...,n, the bivariate H-functions reduce to univariate H-functions
and (5.14) reduces to Carter's Theorem 4-1, (3:52), for the
distribution of products of independent H-function variates.

5.3.1.2 The Distribution of Quotients

Theorem 5.4: If X,,Y,5 X,,Y, are two pairwise independent random
variables with bivariate probability density functions fl(xl’yl) and

fz(xz,yz) respectively, where
( kj IH[gljxj’Sijj] ’ xjon >0
fj(xj’y:]) = j

. 0 , otherwise

for j=1,2, then the bivariate probability density function of the

random variables
Z=X\/% ; We=Y/Y,
is given by
— -
n
B,
kiko M)oNpaMp, Ny Ma, Ny | 849 Ny 5 N3
——1 z,w>0
812 822 PI'QI'PZ’QZ’P3’Q3 8_21 w n“
822 g ; ng
fz’w(zow) - = -
K\O otherwise (5.15)

where M =M #N;gs Ny=Nj M5, Py=Py4Qy,, and Qg =Q,+P;,, for i=1,2,3,

and

ﬂmﬂﬂ&“v'vv A AT N MR SR
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1 = (eil,Eil), 1'1.00}131, (l'fiz-apiz,l'.iz), i'louoN32
(3515841)s 1=leeeNyy, (1-b;5=2B,,,B5), 1=1...M)y,
(351085105 1N +1eeePyy, (1ob,=2By0,Byp), d=My,41e..0Q),
3 = (cil,cil), 1-1'..N21’ (l_diz_zniz,niz), i’lochzz
(415C11)s 1=Np +1eeePyy, (1-d,,=2D 5,D;,), i=Mpp+l...Qpy
n“ = (fil,pil), 1‘1..0“31, (I%iz-agiz,ziz), 1-1000M32,
(£115Fg1)s 1=Ng #1euoPyy, (l=eyp=4E;5,E 5), i=M3p+1...Q3

nS = (bil,Bil), i'loooMll, (1‘812-2A12,A12), i’looole’

(bil’Bil)' i-M11+1o-oQ11, (1.312-2A12,A12), i=N12+1-00P12

(dil,Dil), i-l...le, (l-ciz-ZCiz,Ciz), i’loo-sz,

(dil,Dil)’ i-M21+1000Q21, (l-ciz-zciz’ciz)’ 1-N22+100-P22

Proof of Theorem 5.4: From Theorem 2.5, n=2, a,=b;=1, and ay=by=-1,

or from (2.22)
-1
fz.w(z,w) = Mz [ Msl'sz{ fl(xl,yl) } MZ-SI,Z‘SZ{ fz(Xz,Yz) } 1
and from the Mellin transform of the bivariate H-function, (3.19), the
bivariate density of Z and W is then given by
-8 -8

-1 2
fz u(zw) =My " [ Kygy) "8y 7 X11(81)%y(87)%q,(5)+sy)

81'2 82-2

X kagyp  Bpp  X12(2781)xp3(2-8)x35(4-8755) ]

~ "y o, <,
MWEIA

WiV o Y P PR T TP LA LA LA LSRR L GRS TR R G LG I
AW ANI DY L) “'." || "' o \"‘ v YN Y y S




Kk
142 -1
= Mo [ X1(81)%9)(82)%5 (5 +8))
812 822

51 ~82
X X12(2-8))%95(2-8))%35(4-5=57) (811 /817)  (831/833) ]
where xlj(')’ xzj(-), and x3j(-), j=1,2, are defined by (3.7), (3.8),
and (3.9) respectively. Recombining like product terms and using
(3.6), equation (5.15) is obtained.

For the case where Mij'Nij'Pij'Qij'o' i=2,3, j=1,2, then the
bivariate H-functions reduce to univariate H-functions, and (5.15)
reduces to Carter's Theorem 4-8, (3:62), for quotients of independent
H~function variates.

5.3.1.3 The Distribution of Powers

Because of the restriction in the bivariate H-function

definition that s, and s, must have identical coefficients in the
x3(sl+sz) term, a general H-function of the form 1H{z,vw] for powers of
H-function variates can not be obtained. However, an H-function of
the form 1H[zllp.w”q), where p,q are rational powers of x and y
respectively, 1s possible. For the special case where p=q an
H-function of the form 1H(z,w] is possible.

Theorem 3.3: If X,Y are random variables with bivariate probability

density function fx’Y(x,y), where

. L3 L] . | ] - - Al - - - » . A . » A
* * !‘ Q. LK '. * “ * ~* ﬂ. o w" “ !'

R N U N
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t

§:: k (H[g)X,8p9] » %,y > O

:£t fx’y(xtY) -
. 0 , otherwise

.

3

s,

then the bivariate probability density function of the random

o~

variadbles

ZSXP;W-Yq
p,q rational and p,q > 0, is given by

fz.w(znw) =

'l'l!
SO I EA AR

WLl
]

(ei+(2'Q'P)E1,Ei)

-~

1/p - .
o M1 aNp Mg, Ny Mg, Ny | 82 (ag+A;-pA;,A1)5(c;+Ci=qCy,Cy)

1 1 :
P1,0Q;,P9,Q5,P4,Q3 | 8oW /a (f;+(2-q-p)Fy,F,)

z,w>0

ALICTA TR

] (by+B; ~pBy ,B;); (d;+D; =qDy ,Dy) |

N

S

0 otherwise (5.16)

>
[ %

where K = kglp-lgzq-llpq

L YT

.l‘ .' .l .~.:

Proof of Theorem 5.5: From Theorem 2.3, letting ti=s;, to=s,,

1,

P -

-1
£z w(zow) = My Mptl—p+1,qt2-q+1{ fy,y(xy) } ]

¢ e v,
". .‘-'. v _'n.‘

. DA M
[T W W N
e R B 8P PRl

and from equation (3.19)
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fz’w(z’w) = Mz-]- [kgl-ugz-vxl(u)XZ(V)X3(u+V) usmpt -p+1]
v*qt;-q'f-l
1 1 quyt2
£, w(z,w) =K 5 T % ()% (V)xg(uty) (g,P2) (gylw)  dtide,
’ (2ni)
u-ptl-p+1 v
v-qtz-q+1 (

where K = kglp-lgzq.1 and S/ is the double contour integral for the ]
inverse Mellin transform as defined by (2.6). Let S)=pty, S,=qt,, and

dsldszqudtldtz, then

1 P /e auy® /q f
fz’w(Z;W) = = sz xl(u)xz(v)x3(u+v) (gl z) (g2 w) dslds2
pq (27i)
u-sl-p+1 ‘
v-sz—q+1 \
-5 -
=KL rr o (amynxy(urn)| (g2t P) et/ s as,
Pa (271)
u=s,-p+l :
vtsz-q+1 _

from which (5.16) follows.
For the case where p=q, then from (3.15), the H-function in

equation (5.16) becomes

(e1+2E1-ZpEi,pEi)

MioNp My, Ny, Mq, Ny
KIH
PI’QI’P29Q2’P39Q3

(31+A1'PA11P51);(C1+C1-Pciopci) 50
z,w

(b1+81-p31 nPBi H (di+Di-poi »Pbi).l
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where K = k(glgz)p-l (5.17)

If (2.23) is applied to (5.17) above, the distribution of
Z'=(zw)P may be found. It can be shown that such a procedure will
result in a solution identical to that given by Theorem 5.1, case I,
for p=q.

Example 5.5: Consider the Kellogg-Barnes I distribution given by

B+1 2,42
o bat 2 208 -a(x” +¥7)
fx,Y(x’Y) TTCBH) (x° +y°) e x,y >0
(8,1/2) T
1,0,1,0,1,0 ',a' X ;
= 2 oy
T(B+D) g 1 0.1,1,1 | vay (0,1/2)

(0,1/2) ; (0,1/2)
i a

Now suppose the bivariate probability density function of
Z = X,/Xy, W = Y,/Y, is desired where X;,Y; and X,,Y, are distributed
according to the Kellogg-Barnes I distribution given above. Suppose
further that fl(xl’yl) has parameters a, =1, 8; = 0, and fz(xz,yz)
has parameters a, = 1, 82 = B, From Theorem 5.4, the bivariate

probability density function of Z, W is given by

-~ - - g W W LN

LN A AN
N X £ )

o 'r'-:f.\f R L & T A O AT O O S0 oL oy




(-1,1/2)

1 1,1,1,1,0,1 z (0,1/2) ; (0,1/2)
= T IH (5.18)
n r(8+1) 1)1’1,1’1'1 w (-1'8’1/2)

(0,1/2) ; (0,1/2)

from property (3.15), k = 2, Equation (5.18) above may be written as

-‘: — —
= (-1,1)
. LLLLoLY 22 [0 5 0,1
= 5T IH 2 (5.19)
. T°r (B+1) 1,1,1,1,1,1 | w (-1-8,1)
-~
[ D) 5 (0,1 |

Recognizing that (5.19) is the H-function form for one of Appell's
hypergeometric functions, special case (3.22), equation (5.19) may be

written as

£, y(21w) = 5 T(B+2)T(LII(1)F (248,1,1;2;-2%, %)
N ’ mT (8+1)
:
:
A
-33 = 2D £ (248,1,152; -2, ")

w

where Fl is Appell's hypergeometric function of two variables as
defined in Appendix B. The results obtained using the bivariate
H-function and Theorem 5.4 agree with results obtained using Mellin
transform techniques as outlined by Fox (10) and illustrated in

Example 2.3.
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'
Example 5.6: Consider Kellogg-Barnes II distribution given by g
¢
‘¢
fx Y(x'Y) - Baz o~(ax + By/x) x,y > 0 “
’ 4

(0,1)

2 0,0,1,0,1,0 ax H
= Ba 1 H (5.20)
0,0,0,1,0,1 JaBy | =  ====-
L 3 (0,1) |
1/2

From (5.17), the bivariate probability density function of Z=X ’

W=Y1/2 is given as

|
|

B 7
(1,1/2)
1/2 0,0,1,0,1,0 | v/a z ;
£, u(@w) =877 H _ (5.21)
? 0,0,0,1,0,1 | Va8 w —
----- 3 (1/2,1/2)]

From (3.15), for k=2, (5.21) can represented as

-
(1,1)

1/2 0,0,1,0,1,0 az m—— —————
£, w(z,w) =~ 48" % .1 (5.22)
i 0,0,0,1,0,1 | aBw ———

. g a-

B

AR Y

| 3 (1/2,1) |

P

[

Equation (5.22) above may also be obtained directly from Theorem 5.5, !

e

p=q=1/2. Using H-function property (3.16), m=n=1/2, (5.22) may now be

7
.

[P

expressed as
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o e
(0,1)
) 0,0,1,0,1,0 | az? :
£, 4(z,¥) = 4Ba“zv .H ) (5.23)
’ 0,0,0,1,0,1 |aBw® | = -—==-
""" s (0,1)

Comparing the H-function in (5.23) with the H-function in (5.20), the

distribution for Z, W may be written as

£z u(z¥) = 48a2 zw [ e~(%u + Bv/u) 4

us=z
v=Ew

2 (u.z2 + 8(w/z)2)

= 4Ba® zw e

The solution obtained above may also be found using Theorem

2 2

1.4. Let z=X'/2 and w=¥'/2, then x=z2, Y=W2, and the Jacobian is

Ix/3z 9x/dw 2z 0

= 42w

dy/dz dy/3w 0 2w
From Theorem 1.4,

2 2
fz’w(z,w) = fX,Y(z W) |J|

- 4ga? g o-(02° + B/2)D)

-
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5.3.2 Transformations for oH[x,y] Variates

This section presents theorems for transformations of JH[x,y]
variates. Examples for testing the theorems in this section are
difficult to derive, and unlike the last section cannot be checked by
comparing the results given here to those obtained for independent
H-function variates by previous authors. This does not mean that the
following theoretical results have no practical applications. Rather,
the reverse may be true - this may be the only practical means for
obtaining the distribution for transformations of the type given in

this section.

5.3.2.1 The Distribution 2£ Products

Theorem 5.6: If xl’Yl; XZ,YZ; eee3 X Y, aren pairwise independent
random variables with bivariate probability density functions

fl(xl’yl)’ fz(xz,yz), eee, fn(xn’yn) respectively, where

kj 2“[81jxj:82ij] ’ xj.yj >0
fj(xj’yj) -

0 , otherwise

for j=l,...,n, then the bivariate probability density function of the

random variables

n n
Z= 1 X, 3 We I Y
=1 =1 3

is given by

hY
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S8 » 7’ A,
RRRAENNY,

o
-

fz’w(z,w) =

-

s ,,._';,

IM) 42BN 5, IMp 5 TN, £ EMa 0 INy ¢ | (Tgy )2 | My 5 Ny

‘e s

(ik z,w>0

j) 2H

s
L)

ZPlj,ZQlj,EPZj,XQZj,ZP3j,£Q3j (g, )w ",

Ll
—
3
w
e
)
[ I

P N ¥
a'sa

0 otherwise (5.24)

s l' ‘. l. 4 A,
PR ()
H

where the I's and ll's are indexed over j and go from 1 te n and

-""
i

"y
»

i}; nl = (eij’Eij)’ isl...M3j, j=l...n, (eij’Eij)’ i-M3j+1...Q3j, j=l..en
,\'\: = - = =

::; nz = (aij,Aij), i l.o'Nlj’ j loo-n, (aij,Aij), i N1j+1000P1j’ j 1-00“
‘ n3 = (cij’cij)’ 1'1..-N2j, j'looan, (Cij,cij), i-N2j+1-o-P2j, j.lonon
.;:'. nl. = (fij,Fij), i-lcoaN3j, j.lo-on, (fij’Fij)' i-N3j+100¢P3j, j-looon
;:.. ns = (bij’Bij)’ i'looo}llj, j-lnncn, (bij,Bij)’ iabllj""lc‘nqu, j-looon
" A n6 = (dij’Dij)' i’looc}izj’ j-l-..n, (dij’Dij)' 1‘b12j+1...Q2j’ j.lnnnn
:

"{ Proof of Theorem 5.6: From Theorem 2.5,

°

Gl 1 n

- f - M, 1 M 0

»tj z’w(z,w) 2 [j-l 51,32{ fj(xj'yj) b1 oz,w >

i3

LY,

® and from the Mellin transform of JH[x,¥], (3.21), the bivariate

:ﬁ% density of Z and W is then given by

::,-
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-1 . " 81 TS,
Ez (@) = M, [jfl{ kiBry B2y X13(81)%5(-8y)x55(s,755) } ]
n -1, 0 81 82
R L T LTI UL TR

where xlj(sl)’ xzj(-sz), and x3j(sl-sz) are defined by (3.7), (3.4),
and (3.20) respectively. Recombining like product terms and using
(3.12), Equation (5.24) may be written directly.

For the case where Mij'Nij'Pij'Qij'o’ i=2,3, (or for i=1,3),
j=1l,...,n, the bivariate H-functions reduce to univariate H-functions
and (5.14) reduces to Carter's Theorem 4-1, (3:52), for products of
independent H-function variates.

Comparing Theorem 5.6 with Theorem 5.3, it is seen that the
form of theorems is identical except that the first deals with JH(x,Y]
variates while the second deals with 18[x,y] variates. It is clear
that a more general theorem can be established for both 1Hx,y]
variates and oH[x,y] variates. However, this property does not hold
for 1H[x,y] variates and 2H[x,y] variates when transformations of
ratios or powers of the variates are concerned.

5.3.2.2 The Distribution of Quotients

Theorem 5.7: 1If xl,Yl; x2'Y2 are two palrwise independent random

variables with bivariate probability density functions fl(xl’yl) and

fz(xz.yz) respectively, where

,
A_a a a

Za a_aa

AR _O _ "

ta h% . %a % “a_a " e

Sl LESRASATITRIECEN, KA K T Kl
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L

AN

kj ZH[ngxj’ngyj] ’ xijj >0

f.(x L) =
J( J’yJ) !
0 , otherwise

for j=1,2, then the bivariate probability density function of the

random variables

Z=X/% ; V=YY,

is given by
s n e
g1 !
kyky M1 oNpaMp, Ny My, Ny | gy Ny 3 M3
9 9 ZH z,w>0
812 822 P,,q,,P,,Q,,P5,Q; [ B21 | M4
822 Ng 3 Mg
fz,w(z,w) = | -
0 otherwise (5.25)

where Mi-M11+N12, Ni'N11+M12’ Pi-P11+Q12. and Qi'Qil+P12’ for i=1,2,3,
and
Ny = (eg15Eq1)s 1=leeiMyy, (1-£,5,F;,), 1=1...Ngy
(eil’Eil)’ 1=Mqy41e00Qqq, (1=£;9,F5), 1=Ngp+l.c Py,
Ny = (a51,441), 1=1cc0Npy, (1-by5-2B;,,By,), i=1...M;,
(8,144;1), 12N 410 Pyyy (1-byo=2B,,,B o), 1mM,,+1...Q,

Ny = (cq15Cqp)s 1mleeeNyyy (1=dy,+2D,5.Dy5), imleeeMy,

(cil,Cil), 1-N21+1000P21, (l‘diz‘.’ZDiz’Diz), 1-M22+1000Q22
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nl‘ bd (fil’Fil)' 1.1.00N31, (l-eiz,Eiz), i-lbouM32,
(fil’Fil)’ i’N31+10-0P31' (l-eiz’Eiz), i-M32+1-00Q32

Ng = (by1,Byy), imleaMy), (1-ag,=2A;5.A45), =leuNpy

n6 = (dil,Dil), i’l.--MZI, (1-C12+2C12,C12), 1-1..0N22,

(d;15D41)s ioMy +1eeeQyq, (1mc #+2C5,C 0), imNpy+1eeiPyy

Proof of Theorem 5.7: From Theorem 2.5, n=2, a1=b1=1, and az'bz"l'

or from (2.22)

fz,w(z'“) = MZ.1 [ Ms

1952{ fl(xl.yl) } Mz_sl’z_sz{ fz(XZ'YZ) } ]

and fr.n the Mellin transform of 2H[x,y], (3.19), the bivariate
density of Z and W is then given by
-8 ~-s

-1 1 2
fz,u(@W) =My = [ kygy) "By Xp7(81)%)) (~57)%4,(51"8))

31-2 32-2

X kygyp; 8y X12(2-81)%95(85-2)x35 (=51 +85) ]

kiky

-1
= g g My [ xy(8))x%p,(-8,)x3,(8)-8))
812 832

-8, -s
X x)9(2-81)%95(85=2)xq5(~81+5,5)(8)1/815)  (89)/83;) 2

where xlj(’)’ x2j(°)’ and x3j(-), j=1,2, are defined by (3.7), (3.8),

..........

-‘.‘." "-F !'..~..‘:._".-.q.‘-’.‘,-y-"... .._-.,..'_-.. I Y ’- w\.'..(.-.',,)

oY




)
&

a {l

DL Y

LY ".

':?;“. Ll .L‘-'..-

...' s
Y

:"u Yy ':
AD A

po‘}
a L
F S M

Ve
v v ot

-
»

¢ '4. Ok

142

and (3.9) respectively. Recombining like product terms and using
(3.12), Equation (5.25) is obtained.

For the case where Mij.Nij-Pij.Qij-o’ i=2,3, j=1,2, then the
bivariate H-functions reduce to univariate H-functions, and (5.25)
reduces to Carter's Theorem 4-8, (3:62), for the distribution of
quotients of independent H-function variates. Unlike Theorem 5.4,
this property does not hold for i=1,3. This is due to the fact that

s -8
for i=2, the H-function is defined as y 2 instead of y 2.

5.3.2.3 The Distribution 2£ Powers

For the same reasons given in section 5.3.1.3, an H-function
of the form 2H[z,w] is not generally obtainable for rational power
transformations of the H-function variates X and Y. However, an
H-function of the form 2H[zllp,wl/q] is obtainable and for the special

case where p=q an H-function of the form 2H[z,w] can be derived.

Theorem 5.8: 1If X,Y are random variables with bivariate probability

density function fx Y(x,y), where
?

k oH[gyx,85¥] » X,y > 0

fx’y(x’Y) =

0 , otherwise

then the bivariate probability density function of the random

variables

! \;,"‘\- a0 e _--',.. ‘.-... _P. ..-,-. . .".‘q .--.\- - -_P- \..'\“ I ','.-". \..“.-. ‘.‘-, \ \'.~..l Y '.$ ‘\' . N . '.‘ ‘\( h-..f»‘(‘*( \
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\ z=xP ; wa=yd 2
"( p,q rational and p,q > 0, is given by
- ; . ;
:. Z,W(z’w) e
-~ ~ A t'
.:_ (ei"'(Q‘P)Ei'tEi) '_
{ M, N, M, Ny, Mo, N 2P | (a,+A, -pA, A, ); (c =C,+C, ,C, )

10 V10M20 N0 30N | 8y {TR1TPA1 Ay 13 (e Ly Ty :

: ot 1/q 2,w>0 b

. P.,Q;,P5,Qy,P5,Q5 | 8oV (£,+(a-p)F;,F) [

, &
i (bi+Bi-pBi,Bi);(di-Di+qu,Di)d :
q{

b "

i: 0 otherwise (5.26) ,
- )
. ’
-~ where K = kg p-lg 9=1/5q i
i 1 2
',; Proof of Theorem 5.8: From Theorem 2.3, letting tl-sl, ty=8,, N
4 :
2 £,(2) = 4, [ M { £5 g(xsy) } ] :

Z 2 ptl-p+1,qt2—q+1 b O Al H

D =Ml n { k,H } '*
- 2 Pt,-p+l,qt,~q+1 2H(8yx,8,Y) ] o
; :
- and from equation (3.21) N
% £ = M, "1 kg, Vg, "x, (u) - o
’ z.w(Z.U) 2 8, &, 1(“ xz(“’)x:;(“ v) s
" u-ptl-p+1 -
g vaqt,—q+1 o
! T
q

d -t -t g

: £ -k L 1 x(u)xg (= - P2y (g, %) 2 dt.ae
- 2 .w(%s¥) - 1{W)%Xy (=v)x4(u-v) | (g} 89 19%2 &
>, ’ (271) -
I8 us=pt, -p+1 X
..: v-qtz-q-o-l .
'E where K = kglp-lgzq-l and S/ is the double contour integral for the 3

0 "
: =,
' .,
1

N

- . o .
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inverse Mellin transform as defined by (2.6). Let slsptl, szxqtz, and

dsldszqudtldtz, then

-s,/p -s,/q
fZ w(z,w) =X _1 sz xl(u)xz(-v)x3(u-v) (glpz) 1 (gzqw) 2 d81d82
? Pq(27i)
u-sl-p+l
v-sz-q+1
=K 1 sz X3 (u)xy (~v)x4(u-v) (81z1/p)-sl(g2"1/q)-Sstldsz
pq(2ni)
u-sl-p+1
v-sz-q+l
u-v-sl-sz+q-p

from which (5.26) follows.

For the case where p=q, then from (3.15), the H-function in

Equation (5.26) becomes

(ei,pEi)
M1s“1p“2:~2:“3|“3 glpz (81+A1'PA1vPAi);(Ci‘Ci+PcioPci)
K 2H p z,w>0
PlsQI;PzaQZ:P3,Q3 3] w (fioni)
I (bi+Bi'pni’PBi);(di-Di+pD1’pDi)J
-1
vhere K = k(glgz)p (5.27)

If (2.23) is applied to (5.27), the distribution of Z'=(zW)P

may be found. It can be shown that such an application will result in

a solution identical to that given by Theorem 5.2, case III.
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Example 5.7:

C
- Bo c  ~(ax + Bxy)
fx’Y(x’Y) ﬁc) X e
-
8 0,0,0,1,1,0 ax
" ey ¥ 8
0,0,1,0,0,1 | =y
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Consider the Kellogg-Barnes III distribution given by

x,y>0

(5.28)

s
L

From (5.27), the bivariate probability density function of z=Xx!/2,

W-Yl/z is given as

B1/2
fz’w(z,w) = rTC—) ZH

0,0,0,1,1,0

0,0,1,0,0,1

From (3.15), k=2, equation (5.29) may be written as

481/2 0,0,0,1,1,0
f (z,w) = H
Z,ute ) 27°5.0,1,0,0,1

az

(c,1/2)
""" s (1/2,1/2)
(5.29)
(c,1)
=—=== 3 (1/2,1)
(5.30)

Equation (5.30) may also be obtained by application of Theorem 5.8,

p=q=1/2.

LI P A ]

AT AT AR E SRS T RS
3 A 5 L

\..' - e *-\ \-‘ -\l‘ v-‘. “\ \-‘ T

From (3.17), m=n=1/2, (5.30) may be written as

"“' ‘“\!' f
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o i (c,1)
( 48 0,0,0,1,1,0 Ll — 3 (1,1)
Y f (z,w) = — 2w .H (5.31)
o £ 1€ 2001000 (B2 s
el .
N - y

Comparing (5.31) with (5.28), the bivariate probability density

A%

function for Z and W may be given by

-

fz'w(zaw) = F%g) zw [ of € e~(ou + Buv) 1

u=z
v=y

NN

| -
PO OO
T @Y

Yoyt

L 480 2c+l (a2’ + B(zw)?)
T'(c)

L]
>

The solution obtained above may be obtained through the use of

Theorem 1.4. Let Z-}(l/2 and W-Yl/z, then X-Zz, Y-wz, and the Jacobian

RS

is

i
SR

ax/9z 9x/3w 2z O

J = = 4zw

9y/3z dy/dw 0 2w

" «‘. ‘l,.l"

L SARBAN

From Theorem 1.4,

K
‘-\-‘:‘

fz'w(z,w) = fx’Y(zz.Vz) 'J| i

C A

2200 | @I

o 48a  2c41 -(az2 + B(ZW)Z)
ey ¢

-
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5.3.3 The Distribution of a Mix of Product and Quotient

In the previous two sections the bivariate distributions of
random variables which were products or quotients of pairwise

independent random variables from two or more bivariate distributions.

ey

:fi While no theorems are presented, this section discusses the bivariate
E%% density functions for random variables that result as a mix of

i:% products and quotients of H-function variates.

i?; As an example, suppose the bivariate density function of the

%Si dependent random variables Z=X and W=1/Y is desired. From (3.13) it

)

-8y

is clear that if X and Y are 1H[x,y] variates, then the resulting

.“.’-4 Y

bivariate density function is of the form 2H[x,y]. Conversely, if X

4.

)
i:j? and Y are 2H[x,y] variates, then the resulting density function is of
o the form 1H[x,y]. Theorems for such transformations can be readily
w,
5 deduced, but are not presented here since they are not readily

SN
iﬁ& generalized to two or more bivariate H-function distributions as is
%§§ shown in the following paragraphs.
u}{ Now suppose the bivariate density function of the dependent
;EEE random variables Z-xlxz and W.YI/YZ’ where X,,Y, ; X,,Y, are pairwise
Qﬁj; independent, is desired. From Theorem 2.5, the bivariate density
A function of Z and W is given by

e
O
- -1 [ M fq(x I'M { £,(x }
i PRTCRDICE A AR A L S A R
." 1f xl'yl i X,,Y, are  H[x,y) variates, then from (3.19) the

.:.::: .

-
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distribution of Z and W is given by

-S -S
-1 1 2
@) fu(@v) =My © [ Kigyy "8y 7 %y1(8)%)) (87)x3;, (51+s))

2 X kogyp; By X12(81)%75(2-87)%3, (2481 -s;) ]

Comparing the x31(s1+sz) term and the x32(2+sl-sz) term, it is clear

oy that it is not possible to make a change of variables substitution and
'ﬁff meet the restriction in the 1H[x,y] definition, (3.6), that terms
:q containing both 51 and S, must have s; and s, be of the same sign. It
iﬁ also fails to meet the restriction in the ,H(x,y] definition, (3.12),
.H‘..
bJ that 8 and s, must be of opposite sign for terms containing both $1
(?: and Sye The same problem occurs if XI,Y1 H xz,Y2 are ZH[x,y]
E;& variates. If, however, X,,Y, are  H[x,y] variates and X,,Y, are
‘-\.-
‘:b 2H[x,y] variates, then the density function of the random variables Z
f and W is representable as a bivariate H-function and will be of the
ﬂii form 1H[z,w]. Conversely, if XI,Y1 are 2H[x,y] variates and xz,Y2 are
fﬂj 1H[x,y] variates, then the density function of Z and W is also
._, representable as a bivariate H~function and will be of the form
)
E’:: 2“[";)’]'
if To eliminate the problems described above, a more general
.‘f.,n
!_, definition of the bivariate H-function would need to be introduced.
ﬂfﬁ Such a definition would be similar to definition (3.6) but would have
:xf an added x,(s,~s,) term. Civen such a definition, it can be shown
L
0. that IH[x,y] and 2H[x.y] would be special cases of this more general
RS
e
¢,
.....
‘.
e
L)
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Jf; definition. Therefore, Theorems 5.3 and 5.6 would be special cases of
a more general theorem for products of H-function variates.

0N Similarly, Theorems 5.4 and 5.7 would just be special cases of a more
- general theorem for quotients of H-function variates. The primary

- difficulty with such a definition is the problem of identifying the

appropriate contours in the inversion integrals to separate poles in

A N

At

the left and right half planes for the sy and Sy variables. While it

gl

would seem that such a definition is viable, additional study on this

problem would be required befor the definition could be implemented.
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CHAPTER 6

Evaluation of the Bivariate H-function

6.1 General Remarks

In Chapter 5, it is shown that the probability density
function of the product or ratio of two dependent H-function variates
is a univariate H-function. Further, it is shown that the univariate
H-function results from simple algebraic manipulations of the
parameters of the bivariate H-function probability density function.
Then to find the density function of the product or ratio of two
depndent H-function variates, one need merely find the univariate
H-function representation by application of Theorems 5.1 or 5.2. The
computer program given by Cook (5:154-176) may then be applied to give
a numerical evaluation and plot of the univariate H-function density.
For these types of problems, evaluation.of the bivariate H-function
density is neither required nor desired.

For problems where the bivariate density function of products
or quotients of pairwise independent variates from two or more
bivariate density functions is desired, evaluation of the bivariate
H-function is required. The procedure for such an evaluation is to
invert the Mellin transform of the bivariate li-function by applying
the residue theorem in an iterative fashion. The procedure, as
outlined in the following sections, is based on the assumption that
any bivariate probability density function of interest is continuous

in each variable throughout its defined region. While such an
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assumption may have some theoretical implications, it provides little
or no practical limitation to the evaluation of bivariate H-function
densities.

By applying the residue theorem iteratively to find the
analytic form of the bivariate probability density function, the
procedures outlined by Eldred (7:112-136) and Cook (5:115-118) apply
to the bivariate inversion techniques as well. However, the
convergence conditions given by Cook (5:61-83) can not immediately be
generalized to the bivariate case. While in most instances, one can
invert the Mellin transform of the bivariate H-function density by
summing residues first in either the left or right half S, plane
followed by a summation of residues in either the left or right half
S, Plane, a set of bivariate convergence conditions must be
established before an analysis of the analytic form of the bivariate
H-function density can be completed.

6.2 Complex Analysis in Multiple Dimensions: (591:25-40)

Definition: A function f(zl,...,zk) in a domain of its
variables is analytic if in some neighborhood of every point
(zl',...,zk') of the domain it is the sum of an absolutely convergent

power series

z ces : an (zl—zl')nltuo(zk-zx')nk (601)
n=0 =0 1070 M

For zj-xj+iyj, J=l,...,k, the space of k complex variables,
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)
i: ZiseeerZy is the ordinary Euclidean space E2k of the 2k real variables K
'- X aYpser oo XYy If 2' = (zl',...,zk') is any given point, the .
( neighborhood of this point will be given by the polycylinder A
N .
? C ] o .l . .
\' (z ’r) . lzj-zj < rj’ J-l’.o.,k .
- k
Y« I‘
‘2 where rj > 0, j=l,..0,k )
from which .
vq C(O’R) : lzj\ < RJ-, j-l.o-o,k ‘
q . .
O Theorem 6.1: An analytic function of complex variables is continous s
. and has partial derivatives of all orders which are likewise analytic, -
- and for all series (6.1) we have k
{
:‘ nl+..-+nk , ;
:{ nyt...n ! a = a f(z ) r
. 1. k. |+ PRPOPRRS Y n n Iy
3 e T SR :
.:, 1 se0 k *
. Theorem 6.2: If a function f(zl,...,zk), all z; complex, is ;
- )
- continuous in domain D, and if in the neighborhood of every point it F
35 is analytic in each variable, then f£(z) is analytic in D. E
9 )
’ Theorem 6.3: If f(z) is analytic in D, all z, complex, then each .
j expansion (6.1) is unique and is valid in every polycylinder C(2',R) :
-; no matter how large, which is contained in D. .
; )
, The advantage of these theorems is that for a function of .
! complex variables that possesses the property that it is analytic in ;
i each variable for all combinations of the other variables, then a 1
A Y
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N
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repeated application of the ordinary Cauchy formula leads to the

formula

dpl . dpz f(plp"')pk)

;
(2ni)¥ ¢

f(z ,oo.,Z ). J LY
1 k P11 g, P22 g Pk

do, (6.2)
1

As in the case of one complex variable, and by Theorem 6.1,

since £(z) is analytic in D, equation (6.2) can be differentiated:

n +ooo+n
9 1 k f(Z) . nl!..-nk! ; ; f(p)dpl...dpk
" : k o n +1 al (6.3)
1 k (@)t ¢ ¢ 1 "
321 .-.azk 1 k (Dl-zl) ooo(pk—zk)

6.3 Inversion 2£ the Bivariate H-function Integral

The bivariate H-function is presented in Chapter 3 in the form

of a Mellin transform inversion integral and is given as

1 cy 1 2
. 1H(x:Y1 = —._21 ‘ xl(sl)xz(sz)x3(51+82)x y dsldsz (6.4)
v (2vi)® C, C
., 172
N
‘; where xl(sl), xz(sz), and x3(sl+s2) are defined by (3.7), (3.8), and
! (3.9) respectively. C1 is a contour in the complex 5, plane running
i from h-i= to h+i= and C2 is a contour in the complex S, plane running
- from w-i= to w+i=. Both C, and C, are indented if necessary to avoid
e the poles of the integrand.
{: From Theorem 6.2, equation (6.4) may be written as an iterated
5 integral and may be given as
o
q
‘>
-}
e
L4
.c’
o2
J

A .
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~
o 8L ~82
‘::-:: 1H[xoY] = 2 I xl(sl)x [/ xz(sz)x3(51+sz)y dsz] ds, (6.5)
. (271)" C C
oy 1 2
P

Ci

Consider first the inner integral. From the H-function

2 >

e ‘ ‘

:hs definition, poles of l(di+Disz), 1-1...M2, I(ei+E1(sl+52))’ 1-1...M3
7:3 lie to the left of C, and poles of F(l-e;=Cy8,), i=l...N,,

P~

l(l-fi-Fi(sl+sz)), i-l...N3 lie to the right of C2. Poles of a gamma

.
s 8

e
fﬂ: function occur at nonpositive integer values of its argument. lence,
-t
':}' the poles for the left half S, plane may be given by:
L4 dy+]
:':' S,. | =, j'O,l,Z,...
.:ﬁ:: 21j Di
e
-\."\. and
>y X
- e, +E;s8,+j
7 i "iv1
( 8 = - - j = 0 1 2 oo
x ‘? 21j Ei ’ s dsly
l...I:
2
o for the factors
o
. My My
{{. it l(di+Disz) and i I(ei+si(51+82))
V) i=1 i=1
~ .
.
Qf
P respectively. Similarly, poles for the right half S, plane may be
[
% given by
-.;-::.
o~ l=c,+j
1.':' 321 = 1 s 3 =0,1,2,...
e J ci
®
oy and
- 1-f,-F, a,+]
A i 171
:‘.: 8 = ' j -0,1,2.000
.: . 21] Fi
q; for the factors
200
v
'.;,:
2
LK
O L R A T B L D S S PR
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N, Ny -
iﬁl F(l-ci-Cisz) and 121 F(l-fi-Fi(sl+sz))

respectively.

In evaluating the residues of the poles given above, s, must

be carried as a constant to be treated as a variable in the next

integral. Because of this, an analytic form after inversion in the sy

plane must be presented to the 8, plane before an analysis of the
location of the poles in the s, plane may be conducted. However, an
analytic form can not be obtained for the general case until a valid
convergence proof, similar to that given by Cook, (3), for the
univariate H-function, 1s obtained. However, analysis of the location
of the poles in the s plane is possible given a specific set of
parameters and will be shown in examples at the end of this section.
While a complete analysis of the location of the poles in the

s plane is not possible without a convergence proof, the poles from

the xl(sl) term may be identified and are given as

bi+j
Slij.--i;—, j-0,1,2,...
and
l-a;+]
slij- Ai » j-o'l,z,o'-

for the factors

SRS O RSN
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— o &
)

s

My Ny
W I'(b,+B,s,) and 1 1(l-a,=-A,s,)
1=1 i""1°2 i=1 i 1%l

Fr 2ol 2y Ty
Sl A

’
o

N

respectively. The top set of poles are valid for the left half plane

"
A

e

and the bottom set are valid for the right half plane.

&
N

Similar results may be derived for JHlxsyle HH[x,y] is

v

; presented in Chapter 3 in the form of a Mellin transform inversion

>
o integral and is given as

\.

g ;oI 1T

H{x,y] = X,(81)%x,(-85)%x9(5,-8,)x y ds.ds (6.6)

v 2 (2n1)2 c. ¢ 1V217720 22773151 7F2 1972

> 1 -2
3
A\: where xl(sl)’ xZ(-SZ), and X3(81-82) are defined by (3-7)’ (3-4). and
(_ (3.20) respectively. From Theorem 6.2, equation (6.6) may be written
’Sg as an iterated integral and may be given as

T

o

- 1 3 It I ~82

- JH[x,y] = —y X;(s)x v X5(-8,)%x4(8,-8,)y dsz] ds; (6.7)
Ny (2vi)® C c

" 1 2

:ﬁ Consider first the inner integral. From the ,H(x,y]

‘? definition, poles oflei-Disz), i=l...M,, (e +E (87-8,)), i=l...M4
;E lie to the right of C2 and poles of P(l-ci+Cisz), i-l...Nz,

i? T(1-f ~F (s;-8,)), i=l...N; lie to the left of C,. Since poles of a
6 gamma function occur at nonpositive integer values of its argument,
fj the poles for the left half 8,y plane may be given by:

oY
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l—c +j
sZij =- Ci » 3 =0,1,2,...
and
. L l-fi-Fisl+j 5 =0,1,2
213 F, ’ Phafenee
for the factors
n x(l-ci+cisz) and i 1'(1-f1-F1(sl-sz))
is] i=l

respectively. Similarly, the poles for the right half plane are given

by
d1+j
821_‘] "'D—i_" 1.0,1,2'00.
and
ei+Eisl+j - 0.1.2
321j = Ei ’ j plyblyecs
for the factors
M) My
1&1 r(di-Disz) and 1ﬁ1 F(ei+Ei(sl-sz))

respectively.

Comparing the poles in the 8, plane for zﬂ(x.y] to those in
the 8, plane for 1Hix,y}, it is clear that for cases where 1H[x,y] and
zﬂ[x,y] have identical parameters the poles for both are exactly
identical except that they are in opposite half planes. Poles in the

8 plane are exactly identical for both 1H[x.y] and 2H[x.y]. 1f s, is

n"\-"q’\-‘ \..\.-\._
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replaced by =S, in (6.7), then the inversion integral may be written
as

1 \ bt 82
oH[x,y] = (m;z JC1 X (8;)x Uczxz(sz)x3(sl+sz)y ds,] ds; (6.8)

From (6.8), the poles in both the s and sy planes are
identical for 1H[x,y] and 2H[x,y]. Therefore, the residues of 1H[x,y]
will be identical to those of 2H[x,y] except that 1H[x,y] will have
variables (x,y) and 2H[x,y] will have variables (x,l/y). This could
also have been derived directly from (3.13). From this analysis, it
is clear that if a set of convergence conditions can be derived for
1H{x,y], then it will also be valid for oH[x,y].

All of the bivariate H-function probability density functions
given in section 4.3 were inverted to reproduce their analytic forms
using the techniques outlined above. The exception to this is the
Kellogg—Barnes I distribution. It can not be inverted for the general
case because specific values of the B parameter determine different
pole sequences. However, once B is set, the residue sequence may be
established and the distribution may be inverted. The Kellogg-Barmnes
distribution was inverted for values of B = 1 and B = 2.

The following examples demonstrate the inversion techniques
outlined above. The bivariate gamma and beta distributions are
demonstrated in Examples 6.1 and 6.2 because they are the most
difficult to invert and because they demonstrate the validity of the

inversion process when fx Y(x,y) is positive for only a portion of the
*
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positive quadrant. Example 6.3 demonstrates the inversion techniques
for oH[x,y] variates.
Example 6.1: Consider McKay's bivariate gamma distribution given by
PHq
-2 Pl o ya-l  -ay
fx’Y(x)Y) I'(p)i (q) X (y x) e Y y>x>0
(P+Q'2.1)
a2 1,0,0,0,1,0 Jax (ptq-1,1) ; —==—-
= —— ,H
'@ 1 1,0,0,001 |ay| 0 e-e--
(p-1,1) ; ===--
L -
2 [ (p=1+s,)I'(ptq=2+s,+s,) -8 -8
- 2 1 zfi 1 172 (ax) 1(ay) 2dslds2
I(p) (2w1) F(ptq-l+s;)
(6.9)

From Theorem 6.2, the Mellin transform inversion integral in (6.9) may

be treated as an iterated integral and may be written as

fx’y(an) -

2 1. F(p-1+sl)(ax) 1 -8

2 [ T(pta-2+8,48,)(ay) ds,] ds,

I(p) 251’ i (p+a-14s)) P

(6.10)

Consider now the inner integral in (6.10). The integral may be

" T AT R N Y ’ Ty . o N e e e e e e e
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<.
L+

evaluated by summing the residues in the left half s, plane. The

poles of the integrand are given by
s2j = —(p+q-2+sl+j) » j = 0,1,2,-..

Summing over j the residues of the poles given by SZj and using the

property
['(x+n)
T -
®) = D GR-D =
yields

;ﬁ;: L residues =
{ 7823
A = L(pHaléiisytey ) (agtey teta2H)(y/a)
:::t:., =0 (sl+szj+p+q-2)(sl+s2j+p+q-1).. .(sl+s2j+p+q-2+j)
3 25" (IHPha-2es))
.2
- A
v o (-1}
N
o 8,4pHq-2 = 3 (ayy]
e e 1 . -
i = (ay) p D Len)
o 3=0
N Recognizing that the summation is just the power series expansion for
e
> ey -
{:if e ay’ the sum of the residues is now given by
g

s
L residues = (ay)p'"q-2 (ay) 1 gmay
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e Substituting the solution for the inner integral back into (6.10)
gives

pHq T(p-1+48;)

~ a ptq-2 -ay 1 ~51
- fx,x(xy) = o Y e [2F1f F?;:;:I:;;) (x/y) “ds;] (6.11)

—~

. 's
2"
v

LA
L)

Tt
Pl a'd

L4

The inversion integral inside the { ]'s may be evaluated by summing

the residues in the left half s, plane. The poles of the integrand

.‘.‘v‘

1

are given by

T W
AN AR

Slj = -(p-1+j) ’ j = 0,1,2,.0.

ooy P~ T
-"- "'..-, A

Summing over j the residues of the poles given by slj yields

ATAE )

'y '{

L residues =

vy, Oy
", l‘.."‘-".-' ¥~ n“',' 1

-

)
= T(pHles H)(peltsy D(K/Y)

z

Slj'l‘P'j

Using the property I'(q-j) = I'(q)/(q-1)(q=2)...(q-3) and recognizing

"', N ok
-;J' OO

-
L 4

that

RN
"."-’ .l‘.l ‘s
DR Y

1 . (q-1)!
(g-1)(q-2)...(q=3) (q-1-j)!
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«P~1yl-P (-1)3(q-1)1 (x/y)3

I =2 7
residues ACH) 420 COSI I L

But, from (94:1), the series above is just the binomial expansion for

(1--x/}')q.1 ,where for convergence, (x/y)2 <1, or restated, y > x.

Then
xp-lyl-p

L residues = ———
¢ T(a)

(1-x/y)37!

P! y2PT (yoyyd7!
I'(®)

Substituting this identity back into (6.11) yields
aP+q

—a - _p=l . _.\q-1 _-ay
Fip)r(q) © (y=x) €

fX'Y(x9Y) = ’ y>x>0
which is identical to the analytic form given in (6.9).

Example 6.2: Consider the bivariate Beta distribution givemn by

] T(py+py*P3)  Py-l py-l a )93-1
X, = [T,y © 7 Y

F(P1+PZ+P3) 1,0,1,0,0,0 X
F(pF(P2) 17%.1,0,1,1,0 |y

(Py+Py+p3-2,1)

(pl'lol) H (Pz'lgl)d
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-8
T(py+pytpy) 1 -s; 1 I(s,+p,-1)y
= FZEISF?EES- E;If T'(s;+p ~1)x [f;if r(81+52+p1+p2+p3-2)d32] ds,

where x,y>0 and x+y<l. (6.12)

From Theorem 6.2, (6.12) may be inverted by the residue theorem
applied to the S, plane, treating s) as a constant, followed by
inversion in the S, plane by residues. Consider the inmer inversion

integral. The poles of the integrand are given by
szj = -(pz"'l"’j) ’ j = 0.1,2,-.0
from which the sum of the residues may be given by

I residues =

-s,
- T(syy#py*3) (85 y#pp=149)y
j=0 (32j+p2-1)(32j+p2) e (32j+P2‘1+j)r(31+52j+P1+P2+P3'2)
823=17Py"]
Py-1+]
y 27 (-1)d

= I
jmo 3! T(sy4py+py=1-3)

Pp-l (~y)3
Z
juo 3! T(sytpy+p3-1-1)

i 4

Substituting this series back into (6.12) yields
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[Pkt
1
A

""‘/_l g
. B

' s s

2 I (p)+py*py) pp-l = ()T (sy4p)-1)x

Fy y(xoy) = ey 2 b . dsy]  (6.13)
(; ’ (py)l(py) 2ni §=0 3T (s +p +p4-1-1)

o

;h The inversion integral inside the [ ]'s may be inverted by summing the
‘\; residues in the left half s, plane. From the integrand of the

,”.‘

o o, 4

inversion integral, the poles of the integrand by

. Iy
e
et

sy; = ~(py-1+1) , 1 =0,1,2,...

i

T
e
W e

from which the sum of the residues may be given by

X 150

Z residues =

= "‘
Sl

.
.
nN A, 0 N

~~

811

'S
&

- (1) (8149 ) sy #p -1+)x
1=0 §=0 J1(813¥P1~1)(8134p)) 00 (84 ¥p) "1+ (s 4Py +p3=1=)

. ,l

2t
v,

Pl Yl e}
s Yo Yy Y e
L
.

8y1=1-py -1 ‘

ofd
a
X ‘- X

.-
“ %

® o P
- 3 z (-y)j x 1 ("1)i
4=0 je0 1137 T(p3L=1)

DAY
" 3 ﬁl

L A

J1Th e e (-l 40 ()

r(P3) 1=0 j=0 ir
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T (1-pqt+i+))

From (B.4), the double series above may be represented as an
Appell's hypergeometric function of two variables. The sum of the
residues may then be given as

Pl'l

I residues = %?;;) Fy(1-p3,b,b';b,b";x,y)

where the parameters b and b' are arbitrary real positive constants
and for convergence x+y<l. From Appendix B, special cases, it is seen

that

pa-l
Fy(1-pq,b,b';b,b" 5x,y) = (1-x-y)

Substituting these values back into (6.13) yields

¢ F(py*patr3) -1 pp-l 1 )93'1 a
X, YY) = FG T ey 7 ks v X

which agrees with the analytic form for the bivariate beta
distributfion given in (6.12),
Example 6.3: The Kellogg-Barnes III distribution is given by

8a® _c _-(ax+Bxy)
£ -8 , ,y>0
X,¥{%) = ey X a,8§0y, ¢>2
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T3
s

Y

I."\"l
PR R A Y
|

(c,1)

6 0,0,0,1,1,0{ ax | =====; (1,1)
B e—— ,L,H
I'(e) 2 0,0,1,0,0,1 % y sme——

.{/_C:ﬁ

Ty 1, by 4l

Yy
we

4
e

¢,

e B LirCs,)By/a) 2 LA Tlets 4s,)(ax) Ydsi] ds,  (6.14) |
T(c) 2m1 2788y 2ni 1782 11 ds3 . |

o8 il
I..' .‘-"'v "l

e
AR ARAN

Inverting first with respect to S1» the integrand has poles at

L ®

A
N

slj = '(52+C+j) y 1= 0,1,2,...

OO
Sohled)

/

Summing over j the residues in the left half S; plane given by $1j

N

-
¢

yields

s "'.,
s b))

LN

~81

il
P

S 8%

P(c+s1j+sz+1+j)(c+slj+sz+j)(ax)
L
§=0 (c+slj+sz)(c+slj+sz+1). .o (c+slj+sz+j)

L residues =

i,

8157 (sg*etd)

= T a X
e j=0 3!

(-1)J

)
1'&. A

-4 A &

a® x¢ (ax)82 ; (3522_£:l)J
j-o J!

»
A

.

82
-Q
o x® (ax) ¢ 7

L g
]

A

i~

Substituting this back into (6.14) gives
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[

Ba c _~ax
Fx,x(®s¥) = 7y *

»
AL !

1 2
ZFif r(-Sz)(Bxy) dSZ] (6.15)

—~

s ... KA

The inversion integral inside the [ ]'s may be inverted by summing the
residues in the right half s, plane. The poles of the integrand are
(. given by

- s2j =35 , j=0,1,2,...
The sum of the residues is then given by

8
X = T(l+3-8p )38, ) (Bry) 3
N I residues = [
= 3=0 (73292 (T824*1)+ e (Z8p4%3)

{ 237

\ -3 Gy (-1
j:o j!

.l. -v » [

e

Substituting this back into (6.15) gives )

‘LTS

Cc

- Ba c _~(ax+Bxy)
fx’Y(x)Y) WC) X e

waaty gy

This agrees with the analytic form given in (6.14).
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;\-’ CHAPTER 7
;;3 Conclusion and Recommendations
<o
(.
?;?: The main purpose of this dissertation has been to demonstrate
ii?ﬁ a practical technique for determining the probability density function
firi and the cumulative distribution function of products, quotients, or
‘::; powers of two dependent H-function variates. This has been
EEE accomplished in section 5.2. While trying to accomplish this purpose,
:;;E other contributions have resulted.
%%3 Fox (10) and Subrahamian (19) show how to find the probability
:%g density function for a simple product or ratio ot two dependent

_}3 variables or of pairwise independent variables from two bivariate
g., distributions using double Mellin transforms. This work has been
Ei% extended in section 2.4 to account for arbitrary rational powers of
EEE the variables. This section also includes extensions of Fox's work to
4-{ n sets of pairwise independent variables. To facilitate manipulations
?:Zf of integral transforms, extensions to the univariate Mellin transform
:;?; properties have been established and are presented in section 2.2.
::ﬁ A second type of H-function which is strongly related to the
g;i first, is defined in section 3.2. Associated properties for both
::: H-function types are given in section 3.3. While many applications
::;; can incorporate the two definitions into one by simply allowing one of
vsg; the variables to be inverted in the H-function definition, it is
?;ﬁ simpler in other applications, such as probability and statistics, to
‘;’ keep the two types of H-functions separated.
»JS
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A remarkably rewarding area of study has been in the area of

}j the cumulative distribution function of an H-function probability

(j density function. First, by section 4.4, the fmproved Laplace

,EZ transform for the univariate H-function given by Cook (5) has been

:?j shown to be unnecessary if the H-function is a probability density

{: function. Specifically, the Laplace transform of the univariate

;E H-function distribution given by Carter (3) is sufficient and

‘is complete. This not only leads to a simplification of the form of the .
1; cumulative distribution function, but it also provides great insight i
i; as to the range of values the parameters of the H-function

E? distribution can undertake. Second, the cumulative distribution

{J function of a bivariate H-function probability density function has

;3 been shown to be a bivariate H-function. And, third, the study of the

{f cumulative distribution function has led to a formula for finding the

- constant for the H-function distribution, given in section 4.5.

& As stated in the first paragraph, the main thrust of this

Ei dissertation has been to find the density function of a product or

= ratio of two dependent H-function variates. A natural extension to

'E this type of problem is to find the bivariate density function of two

fs H-function variates which are products or ratios of pairwise

i; independent variates from two or more bivariate H-function

" distributions. This has been accomplished {n section 5.3. However,

‘E unlike the univariate H-function combinations, section 5.3 shows that

’E the bivariate density function of some combinations of H-function

5 :
:§

[

E ,
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[
'.‘-
;f: variates will not result in a bivariate H-function distribution.
SRS
.:: The following recommendations are made for directions of
A"
(_) future work on bivariate H-function distributions:

1. A set of convergence coniitions similar to those given by

}i\: Cook (5) for the univariate case are needed for the bivariate

(' ; H-function. While several results have been obtained on the bivariate

’\gz H-function distribution, further significant advancements would be

';:; difficult without such a set of conditions.

‘\ 2. Use of the double Laplace transform to find the

'}SEE probability density function of the sum of two dependent random

k}&; variables is another area of possible research. Sneddon (106) devotes

o

(nv' a section to the double Laplace transform and provides some insight to

:E:: the solution of this type problem.

Ef§ 3. An extension of Prasad's theorems (57) to the bivariate

o lat

{;5 case would allow a researcher to develop a formula for the Laplace

:Eii trangsform of the bivariate H-function. Such a formula zould prove

::3 useful in the study of sums of dependent H-function variates.

:Eﬁ 4. 1In Chapter 6, the analytic form of the bivariate

;E; H-function is analyzed by performing the coatour integration

'i;ﬁ iteratively. While this works well for special cases, it is difficult \
;:E' to utilize this procedure to write a general program to invert the 1
‘jsi bivariate H-function. It is believed that if the location of the two 1
:J: dimensional poles can be systematically analysed, a more efficient 3
‘§~ inversion technique can be accomplished by using the properties of the

PR "R IR TR IR BN )
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« multiple Laurent's series given {n (6.1).

';~ 5. Given a set of convergence conditions, a study of the
various methods of numerical inversion of the H-function should be
considered a must. This work could include a study of the univariate
computational efficiency as well as a generalized code to numerically
{ invert the bivariate H-function.

6. Another possible area is the use of H-functions to study
g probability density functions defined over the entire real line. This
. area of research may be applied to univariate as well as the bivariate
'i‘ distributions. The positive-negative component methods developed by
X Epstein (9), Springer and Thompson (18), and Fox (10) should
accommodate such usage, particularly for distributions symmetric about
A zero.

V.~ 7. The application of bivariate H-functions to the fitting of
contours to correlated data is another unexplored realm. Being the

- . most general of the special functions of two variables, the bivariate

. H-function appears to be as suitable for contour-fitting as it has

5

been for analyzing probability density functions of products and

-
'@
L]

ratios of dependent random variables.
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o APPENDIX A: Classical Bivariate Probability Distributions

. Normal

. 1 -1 2 2
- £ (x,y) = exp { (x° = 2pxy + y )}
- L AP 2(1-0%)

» {x,y{e® p#*1,-1

M ad
LY

Uniform

1) Morgensterm

@S L

A
Rl

1 +p0(2x - 1)(2y - 1)

fx’Y(x’Y)

OO

0<x,y<1

*
s

o P

II) Plackett ;

p{(p - 1)(x +y - 2xy) + 1}
[{1+ (p - 1)(x + y)}% = 4p(p - 1)xy]3/2

ALY

fx’Y(x)Y)

0<x,y<1l, pt1l

T s -

Cauchz

.‘- ‘:.‘:u.‘ ’ \,“. o r{ . ) -l. .‘..‘. v"" ."-

P 2 2 2,-3/2 "
fx’Y(xoY) = T [p” + x* + ¥°] :
- :
(‘ = {x,y <, p>0
-
. i
2V
e ¢
o) '
a" ¥
.'o. §
A -
[
3
M ;
X ;
v -.‘ "
T 5 S S S AT ey e e T T re ST A TR T T A T Tt AT i s P Tt T N QN N ¢ T L o
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Beta

ey +p, +Py) py-1 p,-L py-1
£ y(x,y) = 1 2 3 X 1 y 2 (1 -x-y) 3
? T'(p) )T (py)T(p4)
X,y 20, x+y <1
Gamma
I) McKay
pHq - - -
fx'Y(x’y) -2 xP 1 (y - X)q 1 e™ay
F(p)T(q)
y>x>0
II) Cherian
=(x~y) min(x,y) pa-1 p;-1 py-1
fy y(,y) = —= ! 22 (x-2) ! (y2) ¢ e%az
r(Pl)r(Pz)r(P:;) o
02 X,y >0
%
{ti III) Wicksell - Kibble
-
~a
o -
¢ 1 G+ -e) (cxy)Ptet
X,y(%¥) = oy @ prak
N ’ P lr(p) k=0 k!T(p + k)(1 ~ ¢)

.
v

-,
0
.l
~
C et
h)
~
~

j.r'.

x,y > 0
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Exponential

I) Gumbel
fx,Y(X.y) = {(1 + ax)(1 + ay) - a} exp(-x - y - axy)

x,y > 0

I1) Marshall - Olkin
Fx’y(x,y) = exp{-A\x - Aoy + X3max(x,y)}
X,y >0

Pareto

p(p + 1)(ab)P*!
(bx + ay - ab)P*2

fx’Y(x’Y) -

x>a, ¥y>b

Student's t

£ (x,y) 1 £ 1+ 1 (x2 - 2oxy + 2)} ~(£2)/4
X,y) & ——m— —— —_—— (x® - 20xy + ¥
x,Y a/1-p2 (£-2) (£-2)(1-p%)

-» {x,y{ @

F-distribution

(vy/2)=1 (vy/2)~-1
vy/2 1 2
/2 ﬁ v 1 x y

1=0 P(vl/z) [(1 + vyx + voy)/v,])

£y, y(Xo¥) = T(v/2)v, ™" v/2

X,y>90, va= Vo + vV + vy
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APPENDIX B

Hypergeometric Functions
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APPENDIX B: Hypergeometric Functions
Appel's Functions: (21:281-302;7:13-36)
The hypergeometric series of one variable is given as
> (a,0)(b,n)x"
e = a,n 21X B.1
oF1(a,bsc;x) nEO O (B.1)

The symbol (u,k), where u denotes any number real or complex,

and k is any real integer, is defined by
(u,k) = %(,‘%“r) = u(utl). . (utk=1), k>0

and

k
(u,~k) = L&D k<0
(1=u,k)

Elements a, b, and ¢ are the parameters of the series and x is
the variable of the series. The series is not defined if ¢ is a
non-positive integer, unless a or b is also a negative integer such
that =c < -a or ~c € -b.

Appell derived an expression for a hypergeometric function of
two variables by considering the simple product of two Gauss

functions.

LI SN

< n‘?‘t'.\':' .' N L X l...!l N
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{+
;;; 2F1(a,b5e3x),F, (a",b" e 5y)
: :;::: o w ' ' m.n
A - T T (a,m)(a’',n)(b,m)(b',M)xy (B.2)
n=0 n=0 (C,m)(c' ,n)m!n!
N
Y
N
}3\ and replacing, in turn, each pair of products (a,m)(a',n), for
“~ .'-
( example, by the composite product (a,m+n). By considering the

possible composite product combinations, Appell derived the following

four hypergeometric functions of two variables.

Tepo - . > (aom+“)(b,m)(b',n)xmyn .
Fl(a’b'b reixsy) mfo nEO {c,m+n)m!n! (B-3)

. B AR PN
WGy P R
-’.‘).‘.‘-'-’Ai.f".‘ .

where for convergence, lxl <1i, |y‘ <1

F

Fy(a,b,b'sc,e’sx,y) = L
m=0 n=0

s
'."..

; (a,mn)(b,m)(b',n)x"y" (B.4)
(c,m)(c’',n)m!n!

2

o RN

«
Y

where for convergence, Ix' + |y| <1

AR’

.
.

PN
T v

L A AN

Fy(a,a’,b,b'scix,y) = I I (a,m)(a’,n)(b,m)(b',mx™Y"  (p 5
u=0 n=0 (¢c,mn)m!n!

b Y

?f‘b

07

4 4
O

ey

vhere for convergence, lxl <1, ‘y‘ <1

(]
'..'a "c

P (abic,c'ix,y) = L ¢ (Zamta)(b,mtn)c’y? (B.6)
m=0 n=0 (c,m){(c',n)m!n!

Al A NA
.l.k P

where for convergence, lx'llz + |y|1/2 <1
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Special Cases: (12:160)

Fi(a,b,b'5a35x,y) = (1 - x)'b(l - y)‘b'
Fy(a,b,bib,b';x,y) = (1 - x - y) 2

F,(a,b,b';a,b";x,y) = (1 = x = y) P(1 - y)b-a
Fo(a,b,b'3b,a3x,y) = (1 - x)°' 2 - x = 9™’

Kampe de Feriet's Function: (7:29-33)

Appells functions may be represented as special casesg of a
more generalized double hypergeometric function of higher order. This

function was first defined by Kampe de Feriet in 1921 and is given by

al;. .'aA
F B bl'bl'; . .ubB’bB' X,y

C cl;ooocc

[ D1 dy,dy"5..0dp,dp’

A B
w o @ (ag,mn) I (by,m)(by',m)x"y"
=g g izl i=1 (B.7)
a=0 n=0 c D
1 (cy,mtn) I (d4,m)(d;',n)m!n!
j-l j-l

where A+ B<C+D+1lorA+B<CC+D+1 and

x +y < min(1,26°0%1
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APPENDIX C

Kellogg-Barnes Distributions
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APPENDIX C: Kellogg-Barnes Distributions

Kellogg-Barnes Type I distribution

608+1

2 2
2 248 -a(x" + ¥y°)
fx.Y(x)y) = 1'11(84.].) (x + y ) e »

x,y>0
a,B8>0

The probability density function, (p.d.f.), of X for B=1 is given as

2 2 =
ba -QaXx f )

2
£e(x) = = e (x4y2)e™ ™ dy
¥ 0

3/2

2
a 2 1 -ax
- % (x + 3 )e

By symmetry, the same is true for the p.d.f of y.

moments of the distribution

The moments of the distribution may be derived from equations

(1.5) - (1.11). By symmetry, it is clear that ux'“y and qxzacyz

. 4Pt
X wT(B+1)

f I ox(x? + y2)B ema(x” + Y% gu4y
00

)

2

Letting ¢© = x2+y2, X = rcosf8, and y = rsind ylelds

B4l = 2 =©/2 .

b4a 28+2 -ar
- 0
x * ATED) U r e [0 cos® dédr

]

2

Performing the inner integral and letting 2z=r“ and dz=2rdr gives

:.;;\;;;3:\;:;}.:.-:1 . 5 !‘._ Ly :z"'b‘v..'- :'n':'-..,'I'E'-‘tﬁ.:‘-'cvchi.:"-t"-c\;r-.(}.."!‘u x ..!.'E"i 'f
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B+l =
2a 8+1/2 -az
“x © FT(B+D) fo z e =~ dz
- 2T(B+3/2)
n/al(8+1)
Tﬁe variance may be given by
2 _ L2 2
o = I f x fx’Y(x;y) dxdy = u,
00 .
B+l = /2 2
- M r2B+3 o-ar” 5529 godr - u 2
nr(B+1) x
009
o BHL _ _L[r(an/z)]z
20 %2al r(8+1)
From (1.10), the covariance of X,Y is given by
- o
cov(x,y) = fofo xyfy, v (%) dxdy - uug
B+l o 2 a/2
4a 2843 _-ar
- -] 8 40 -
AT IO 4 e IO 8in® cos9 d6dr ux"y

. B+ _ 4 [r'(a+3/z)]2

Ta wza r{a+1)

Since the correlation for X,Y is the covariance divided by the

standard deviations of X and Y, the correlation p(x,y) may be given

-,
[ iy

-8
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by

p(x,y) = —12;(:':}—:12‘3)

where

.- Vﬁ_[r(s+3/2)]2
72| r(s+1)

Kellogg-Barnes Type II distribution

fx.Y(x.Y) = 802 e-(ax + By/x) ’

The p.d.f. of X is given by

fx(x) - Bc2 I e-(ax + By/x) dy
0

2 ax

= q° xe”

Similarly, the p.d.f. of Y is given by

fy(Y) - Baz Io e-(ax + By/x) dy

183

x,y>0
a,B8>0

Recognizing that e™®* is the kernel of the Laplace transform, the

p.d.f. may be given by

£,(y) = Ly { Ba2e~BY/% )
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and from (95:146 #25)

£4(y) = 280)¥2 /3 K [ 2(a8y)?/? |

where K [z] is the modified Bessel function as defined by Erdelyi

(95:371;8:5). The final form for f.(y) can also be derived by taking

the Mellin transform of fy . (x,y) and then taking the limit as s-l,
*
(15:27 #3.16).

moments gi the distribution

™ o
e =/t S xBal e"(ox *+ By/x) dxdy
00

= 2/a

- o
u, = f y8a2 e~(ax +8y/x) dxdy
Y oo

= 2/aB
2 .5 2 ga2 e-(ax + By/x) 2
- -(ax y/x -
9. IOIO x€ Ba‘ e dxdy - ux

[_J 2
= a? [ x) e gx - 4/a
\j 0
&

- 2/a2
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6.2 =51 y2ga? e~fox + By/x) dxdy - u 2
Y 00 y

2 L ]
=207 3gmex g 4/(ad)?
B2 0

= 8/ap2

- o
cov(x,y) = £ [ xyBa? e (X +BY/X) g4y - 4 u
00 xy

=3 x) oK gy - 4/Ba?

cov(x,y)

Oxdy

p(x,y) =

= 1/2
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Kellogg-Barnes Type III distribution

Nk & d

C

c e-(ax + Bxy) , x,y>0

fo v(x,y) =
X.Y r(c) a,850 , ¢>2

The p.d.f of X is given by

< e . 8

-ax -Bxy

(x) = ea_ X~ e f e dy
fx r(c) 0

AV SOy L APLERE

Similarly, the p.d.f. of Y is given by

£(y) = P( ) f xC e (otBYIX gy

ga T(c+l)

I'(c)(atsy)H!

- CBQC (G + By)‘(c+1)

moments gg_the distribution

gaS ®® el (ax + Bxy)
- Ba c -(ax xy
x " O IOIO x e dxdy

= ¢c/a
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[ [ an
cov(x,y) = 83— 1 Sl o=0X ¢ S BXY gudx - w
I(c) 0 0 Xy

= 1/8(1=c)

cov(x,y)

p(x,y) =
axay

/c=2
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APPENDIX D

Contour Plots of the Bivariate

H-function Distribution
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APPEXNDIX D: Contour Plots of the Bivariate H-function Distribution

The following contour plots were accomplished using the Vector
General 3404 graphic display with the VAX 11/780 computer, VAX/VMS

operating system 3.5, Advanced Graphics Lab., University of Texas.

McKay's bivariate gamma distribution

ptq

‘ -1 q-1 _-ay
- f = 2 xP -x) e g>x50
x,¥(9) = R (y 0
(p+q-2,1)
a2 110:0,0,1,0 . jax (p+q—1’l) ; —————
= o 1“
(® '1,1,0,0,0,1 lay| = -———-

| (p-1,1) 5 ——-

Plots of McKay's bivariate gamma distribution are shown in Figure D.l.
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a) a=2.0 , p=q=0.5

Figure D.1 Contour Plot of McKay's Bivariate Gamma Distribution
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The bivariate beta distribution

¢ r(P1+P2+p3) Pl-l Pz'l L P3-1
£, % TeSrerey ¥ Y ()
1 2 3
xtY>o 1 X+y_<_1 ’ PI-PZ,P3>O-
- L -
: T(py+p,+py)  1,0,1,0,0,0 |x ;
0 F(pIr(py) 1 9,1,0,1,1,0 |y (py+py*p4-2,1)
®
o (py-1,1) 5 (py-1,1) |
.\;' e
~7-
\1. .
T Plots of the bivariate Beta distribution are shown in Figure D.2.
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sA <

\{5 “n ‘t'_'l_-.

!

2) Py"Py=P3=0.5

Figure D.2 Contour Plot of the Bivariate Beta Distribution '
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¢) Py=2.5 , py=py=1.5

Figure D.2 Conatour Plot of the Bivariate Beta Distribution
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Kellogg-Barnes Type I distribution

g+l 2 2
4o 2 2.8 ~al(x” +y")
£ L[ S + , ,¥>0
x,000¥) = orgrn 0 Ty e o850
(8,1/2)
1,0,1,0,1,0 | Ya x ;
= _Q& _ oy
T+ Y 4 0,1,1,1 | /ey (0,1/2)
] (0,1/2) 5 (0,1/2) ]

Plots of the Kellogg-Barnes I distribution are shown in Figure D.3.
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a) a=2.0 , 8=1.0

Figure D.3 Contour Plot of.the Kellogg-Barnes 1 Distribution
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c) a=1.0, 8=2.0

Figure D.3 Contour Plot of the Kellogg-Barnes I Diatribution
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Kellogg-Barnes Type II distribution

fx Y(x,y) = 802 e~ox - By/x , x,y>0

' a,8>0
- —

(0,1)
2 0.0'1.0,1.0 ax H
= Ba 1H

oioioylgo’l GBy —————

----- ; (0,1) J

The Kellogg-Barnes II distribution is shown in Figure D.4
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8) a=1.0 » 8=1.0

Figure D.4 Contour Plot of the Kellogg-Barnes II Distribution
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c) a=2.0 , B=1.0

Figure D.4 Contour Plot of the Kellogg-Barnes 11 Dlstributloﬁ 1
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Kellogg-Barnes Type II1 distribution

Bac c _-ax - Bxy
f, o(x,y) = X~ e , x,y>0
X, ¥ T(e) a,B0 , ¢>2
[ (c.1) )
0,0,0,1,1,0 | ax | -=—-- ; (1,1)
= B— H
F(c) 2°0,0,1,0,0,1 [y}  -m-
L .

Plots of the Kellogg-Barnes III distribution are shown in Figure D.5.
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Figure D.5 Contour Plot of the Kellogg-Barnes III Distribution
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Figure D.5 Contour Plot of the Kellogg-Barnes III Distribution
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d) a=2.0 I B’c-l-O

1a X,y

e) a=c=1.0 , 8=2.0

Figure D.5 Contour Plot of the Kellogg-Barnes III Distribution
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